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Abstract—Location awareness is vital for several applications
in wireless ecosystems, including fifth generation (5G) and beyond
networks defined by the 3rd Generation Partnership Project
(3GPP). However, complex wireless environments such as indoor
factories are characterized by harsh multipath propagation and
non-line-of-sight (NLOS) conditions, which are detrimental to
localization accuracy. This paper introduces the concept of
blockage intelligence (BI) to provide a probabilistic description of
wireless propagation conditions. Then, it discusses its integration
in both conventional and soft information (SI)-based localization
algorithms. Case studies are presented in the 3GPP indoor fac-
tory scenario with various gNodeBs (gNBs) deployments. Results
show that BI together with SI-based localization significantly out-
performs existing localization techniques. The rich information
provided by BI is vital to perform accurate localization in 5G and
beyond networks operating in complex wireless environments.

Index Terms— 5G, localization, NLOS identification, wireless
networks, industrial IoT.

I. INTRODUCTION

OCATION AWARENESS is a key enabler for a myriad

of applications in fifth generation (5G) and beyond wire-
less networks [1]-[5], including autonomy [6]—[10], smart en-
vironments [11]-[15], assets tracking [16]-[20], and Internet-
of-Things (IoT) [21]-[24]. In particular, with the rapid transi-
tion towards Industry 4.0, the interest in accurate localization
for Industrial IoT (IIoT) applications is increasing rapidly
[25]-[28]. The localization requirements in 5G networks for
the different applications are defined by 3rd Generation Part-
nership Project (3GPP) in terms of key performance indicators
(KPIs) which include accuracy, latency, and availability [29].
However, fulfilling such requirements in complex wireless
environments is particularly challenging. Industrial sites are
complex wireless environments, typically characterized by
a large number of metallic surfaces and machines, which
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determine heavy multipath propagation and frequent non-
line-of-sight (NLOS) conditions [30]. These impairments are
particularly detrimental to localization accuracy, especially at
millimeter waves [31]-[33].

According to current 3GPP specifications, localization in
5G networks relies on processing single-value estimates
(SVEs) extracted from the received waveforms such as time
difference-of-arrival (TDOA), round-trip time (RTT), and
angle-of-departure (AOD) through conventional SVE-based
algorithms. To improve localization performance, also infor-
mation on additional paths for multipath mitigation and NLOS
identification can be employed [34]-[38]. However, SVE-
based localization algorithms are typically unable to satisfy the
KPI requirements for IIoT applications due to the insufficient
positional information encapsulated in SVEs [39]. In this con-
text, 3GPP study items for Release 18 are investigating the use
of machine learning (ML) and artificial intelligence to improve
5G networks localization and communication capabilities [40].
The support to ML solutions is fundamental to enable more
effective algorithms for localization in 5G and beyond wireless
networks [41], [42]. In particular, soft information (SI)-based
localization can effectively leverage ML techniques to over-
come the limitations of conventional SVE-based algorithms
[43], [44]. Specifically, SI-based localization makes use of
probabilistic models to characterize the relationship between
measurements, contextual information, and user equipment
(UE) position in 5G and beyond networks [5]. However, the
extraction of SI from SVEs provided by 5G measurements
alone may be insufficient to provide accurate localization in
complex wireless environments, such as industrial scenarios.
To address this issue, NLOS identification can be seamlessly
integrated in SI-based localization [43]. However, conventional
NLOS identification techniques provide binary information
that is not able to provide rich information on the wireless
propagation conditions [37], [45], [46]. Moreover, the prior
geometrical or statistical characterization of the wireless en-
vironments typically required by such methods is not always
available [38], [47], [48]. Therefore, it is necessary to develop
more effective NLOS identification techniques, able to provide
richer and more flexible information.

Fundamental questions related to NLOS identification for
5G networks in complex wireless environments are:

e how the positional information encapsulated in the 5G
received signals can be leveraged to enhance NLOS
identification; and

e what is the performance gain that a probabilistic charac-
terization of NLOS conditions can provide to localization
algorithms?
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Fig. 1. Pictorial view of SVE-based localization, SI-based localization and SI-based localization with BI. The red annulus indicates a gNB, the blue circle
indicates the real UE position and the cross indicates the estimated position. The hatched polygons represent obstacles that determine NLOS conditions. The

coordinates on the axis are in meters.

The answers to these questions will enable the development
of localization techniques able to fulfill service-level require-
ments for 5G and beyond wireless networks operating in
complex wireless environments. The goal of this paper is to
provide a probabilistic representation of wireless propagation
conditions, referred to as blockage intelligence (BI), that can
be integrated into both SVE-based and SI-based localization.
On the one hand, BI can be used to weigh the quality of
measurements in SVE-based localization. On the other hand,
the probabilistic information provided by BI enables to reduce
the uncertainty in SI models, thus improving the localization
accuracy as depicted in Fig. 1. The key idea of Bl is to process
the rich information encapsulated in the received signals to
provide a probabilistic characterization of NLOS propagation
conditions. Such approach is particularly suitable for 5G and
beyond wireless networks given the support to soft NLOS
identification values starting from 3GPP Release 17 [49].
Accordingly, we advocate that the integration of BI in the
SI framework is able to provide a new level of accuracy for
localization in 5G and beyond complex wireless environments.

This paper proposes the concept of BI to enhance location
awareness of 5G and beyond networks operating in complex
wireless environments. The key contributions of the paper can
be summarized as follows:

e proposal of BI for providing a probabilistic characteriza-
tion of NLOS propagation conditions;

e development of a low-complexity method for obtaining
BI in complex wireless conditions; and

e quantification of the localization performance gain pro-
vided by BI in the 3GPP indoor factory (InF) scenario.

The remainder of the paper is organized as follows. Sec-
tion II briefly describes localization in 5G networks. Section III
introduces a method for obtaining BI and discusses its integra-
tion in localization algorithms. Section IV presents two case
studies in 3GPP-standardized InF scenarios. Finally, Section V
gives our conclusions.

Notations: Random variables are displayed in sans serif,
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upright fonts; their realizations in serif, italic fonts. Vectors
and matrices are denoted by bold lowercase and uppercase
letters, respectively. For example, a random variable and its
realization are denoted by x and =z, respectively; a random
vector and its realization are denoted by x and x,respectively;
a matrix is denoted by X. For a matrix X and a vector «, their
transpose is denoted by X T and =T, respectively. ||x| denotes
the norm of the vector x. Sets are denoted by calligraphic
font. For example, a set is denoted by X. z* denotes the
complex conjugate of x; |x| denotes the absolute value of x;
[2] denotes the smallest integer greater or equal to x; The
function fyx(x) and, for brevity when possible, f(x) denotes
the probability density function (PDF) of a continuous random
vector x; ¢(x; p, 37) denotes the PDF of a Gaussian random
vector x with mean g and covariance matrix X. Eq.{-|ly}
denotes the expectation with respect to the random variable
x conditional on y = y. The function 1 4(z) is equal to 1 if
x € A and 0 otherwise. The notation O(-) is used to indicate
asymptotic complexity.

II. LOCALIZATION IN 5G NETWORKS

Consider a 5G localization network composed of N, base
stations, namely gNodeBs (gNBs), indexed by j € N, =
{1,2,..., Ng} and with known positions {p;};en,. Based
on a collection of measurements {y; },¢ N, obtained from the
gNBs, it is possible to estimate the UE position. Measurements
may include time-, angle-, or power-based metrics, waveform
samples, and any combination of them. Each measurement y;
is related to a positional feature 6;(p) which depends on both
the UE and the gNB positions.! According to current 3GPP
specifications, {y;};ca, must be processed to obtain a set of
SVEs of positional features, denoted by {éj }jen,» which can
be used for localization [49].

'In the following, the dependence on p of measurements and features will
be omitted for notational brevity.
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A. SVEs for 5G localization

3GPP standardization documents define two reference sig-
nals (RSs), namely the positioning reference signal (PRS) and
the sounding reference signal (SRS) for downlink (DL) and
uplink (UL) localization, respectively. While DL localization
can rely on the transmission of a PRS from a gNB to an
UE, UL localization can rely on the transmission of an
SRS from an UE to a gNB [50]. PRS and SRS share a
similar structure and are generated as orthogonal frequency
division multiplexing (OFDM) signals. The PRS and SRS
can be transmitted with different carrier frequencies either in
frequency range 1 (FR1) (carrier frequency between 410 MHz
and 7.125GHz) or frequency range 2 (FR2) (carrier fre-
quency between 24.25 GHz and 52.6 GHz). RSs transmission
can be performed with different numerologies (i.e., different
bandwidth and subcarrier spacings) and with different time-
frequency configurations [51]. By processing the received RSs,
one can extract SVEs for localization, including time-of-arrival
(TOA), TDOA, RTT, and AOD [50], [52].

TOA is typically determined based on the estimation of the
delay associated with the first path in the cross-correlation
between the transmitted and the received RS. However, in
complex wireless environments, NLOS conditions and mul-
tipath propagation introduce biases in TOA estimates that are
detrimental to localization accuracy. Different approaches have
been explored to mitigate the biases in TOA estimates [38],
[53], [54]. We consider the iterative algorithm proposed in [55]
for TOA estimation, which is briefly reported in the following.
Let r(t) and s(t) be respectively the received and the trans-
mitted RS (either PRS or SRS) with samples r[n] = r(nTy)
and s[n| = s(nTy), where Ty denotes the sampling time. Let
R, s[n] denote the cross-correlation between r[n] and s[n],
which is given by

Rysn)= > r[k]s*[n— k] (1)

for n = 0,1,..., Ny — 1 where Ny denotes the number of
samples per waveform. At each iteration, the sample associated
with the peak of RLZ,S is identified, and then its contribution is
removed from the cross-correlation considered for the next
iteration. After Np iterations the TOA is estimated as the
smallest delay (which corresponds to the first path) detected
during the iterative procedure. The use of TOA measurements
for localization requires accurate synchronization between the
UEs and the gNBs. This represents the main challenge for the
adoption of TOA-based localization and, starting from Release
17, the 3GPP put forth methods for time synchronization of
all the network elements, including the UEs [56]. In partic-
ular, time synchronization is widely considered for 5G and
beyond dedicated wireless networks, especially in industrial
environments [57]-[60].

From TOA measurements, RTT measurements are obtained
averaging DL-TOA (obtained from PRS transmission) and UL-
TOA (obtained from SRS transmission). The estimation of
the AOD can be performed if the gNBs are equipped with a
sufficient number of antennas to enable beamforming. Specif-
ically, from multiple PRS transmissions with different beam
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orientation angles, the AOD can be estimated by identifying
the beam with the highest reference signal received power
(RSRP) [61].

B. SVE-based localization

Conventional SVE-based localization algorithms directly
exploit the SVEs to perform localization. For example, the
least squares (LS) algorithm is widely considered for esti-
mating the UE position in mobile networks [62]-[64]. Let
{éj}je N, be a set of SVEs obtained from the gNBs, then
the UE position is given by

A . A 2
p=argmin |6 —0(p)| )
P

where [|@ — 6(p)| must be intended in terms of angular
distance for localization with angle-based SVEs and

0 =101,02,....05]"
0(p) = [01(p), 02(B), - .., On, (B)]".

Note that the use of SVEs only is a limitation to the localiza-
tion accuracy since SVEs are typically unable to fully provide
the positional information encapsulated in the waveform.

(3a)
(3b)

C. Sl-based localization

SI-based localization leverages ML techniques to provide a
probabilistic characterization of the relationship between UE
position, measurements, and environmental information [43].
In particular, this is performed considering both soft feature
information (SFI) (i.e., the positional information encapsulated
by the measurements), and soft context information (SCI) (i.e.,
the positional information related to contextual data). In a non-
Bayesian setting, the SFI related to the SVE 0 is a function
of the positional feature as

L4(0) o f5(6;0). 4)

Given a collection of independent SVEs {6} e, obtained
from different gNBs, a maximum likelihood estimation can
be performed to infer the UE position as?

p=argmax [] £; (0;(p)). %)
P jeN,

In addition, SI-based localization enables data-fusion. Specifi-
cally, if each gNB is able to provide conditionally independent
heterogeneous measurements, their SFIs can be efficiently
fused via multiplication [43]. SFI is estimated as proportional
to the joint probability distributions of measurements and posi-
tional features, hereafter referred to as the generative model. In
complex wireless environments, the generative models cannot
be determined a priori and it is necessary to learn them from
the environment via density estimation. We consider generative
models in the class of Gaussian mixture models (GMMs)
which have been recently demonstrated to be effective in
5G and beyond wireless networks [44]. Let & = [0 6]T and
z = S(x) where S denotes a data sphering transformation

21f also SCI is considered, (5) becomes a maximum a posteriori estimation.
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[65]. Then, the generative model approximation in terms of
GMM is given by

N
f(z25) = Zai@(z§ﬂi72i) (6)
i=1

where = = {ay, pi, Ei}?]:“i is the set of parameters of the
GMM, N, is the number of Gaussian components, and «; €
RT are the mixing coefficients such that Zf\;ﬁ o; = 1. The
use of GMM enables the approximation of complex densities
if Ny, and = are accurately estimated. To this end, given a
sphered training dataset {zn}fy:Dl, an estimate = of the set of
parameters can be determined through maximum likelihood
estimation. Specifically, since a closed-form solution cannot
be obtained, = can be approximated through the expectation-
maximization algorithm [66]. Details about the importance of
the dataset dimension for training the SI generative model can

be found in [5].

III. BLOCKAGE INTELLIGENCE

Localization algorithms benefit from the positional infor-
mation provided by NLOS identification. However, the lack
of a probabilistic characterization of NLOS conditions and the
need for prior geometrical knowledge of the environment limit
the potential of NLOS identification in localization. To over-
come such limitations, we exploit the intrinsic information on
wireless propagation encapsulated in the received signals. This
can be obtained by processing the cross-correlation between
the transmitted and the received RSs. On the one hand, such
cross-correlation captures rich information on the wireless
channel conditions; on the other, it is commonly available
and necessary to many ranging algorithms for TOA estimation
[35]. In particular, we consider the positional information
encapsulated in

gln) = Ry s[n)| 1)

forn=0,1,...,N. —1 where N, = [T\/Ts| and T}y is the
maximum path delay such that the received waveform contains
positional information (e.g., Ty can be determined based on
the maximum distance between the gNB and the farthest
obstacle or based on the wireless channel delay spread).
Fig. 2 shows an example of realization of g[n] in line-of-
sight (LOS) and NLOS conditions. It can be observed that in
LOS conditions, g[n] exhibits a dominant peak around the
real TOA between the gNB and the UE. Conversely, g[n]
in NLOS conditions is characterized by several peaks with
similar amplitudes spread over a wide time frame. Note that
in such case the highest peak in g[n] is due to a signal replica
caused by multipath propagation.

A. Feature extraction

Despite the rich information contained in g[n], its use
can be unfeasible for several applications due to its high
dimensionality, especially when the RSs are transmitted with
wide bandwidths. Therefore, a dimensionality reduction step
on g[n] is needed to effectively implement BIL. In particular,
a low-dimensional set of features can be computed to extract
the positional information encapsulated by g[n]. Such features
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Fig. 2. Example of g[n] in LOS and NLOS conditions considering a UE
in a fixed position distant d = 20 m from the gNB and T = 0.4 us with
perfect syncronization between the gNB and the UE, the real TOA is d/c ~
0.067 us, where ¢ denotes the speed of light.

can be selected based on the time and amplitude dispersions
that g[n| exhibits in different propagation conditions [37],
[38], [67], [68]. These characteristics can be quantified by
computing statistical indicators on g[n]. Differently from TOA
estimation, the computation of such statistical indicators for BI
does not require accurate syncronization between the UE and
the gNBs. Specifically, we evaluate the time dispersion of g[n]
considering its normalized version given by

g[n]
Ne—1 ‘
> om0 9lm]
Then, it is possible to compute the time dispersion mean,

variance, skewness, and kurtosis, which are respectively given
by

g[n] = (8)

N.—1
=3 mT, jlm] 92)
m=0
N.—1
op = Y (mTs— p)? glm) )
m=0
Nc—1 _ 3
Xt — Zm:O (mTS éut) g[m] (9C)
(0?)?
N.—1 _ 4
Kt = Zm 0 (mTS Mt) g[m] (9d)

To evaluate the amplitude dispersion, we consider informa-
tion extracted directly from g¢[n], namely, energy, maximum
value, sample mean, sample variance, sample skewness, and
sample kurtosis which are respectively given by

Ne—1

E=> glm)? (10a)
m=0

M = max g[m] (10b)
1 Ne—1

Ha= 3o n;) glm] (10c)
1 N.—1

2 _ - _ 2

%= N 2 (glm] = pa) (10d)

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
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N.—1 _ 3
o= i > om0 (g[mg] Ha) (10e)
Ne (03)2
1 S0 Hglm] — pa)*
" TN, (02)? .

The vector of statistical features containing the positional
information exploited by BI is

V= [utao—?axtaﬂtagaMa,u'aao—g7xa7na]T (11)

B. BI probabilistic model

In this section, the statistical indicators defined in Sec-
tion III-A are employed to develop a method for obtaining
BI. The use of a probabilistic characterization of NLOS
propagation conditions enables overcoming the limitation of
binary NLOS identification. In particular, a probabilistic char-
acterization of NLOS propagation conditions can be obtained
considering a two-class supervised classification problem [69].
Let y € C = {+1,—1} be a binary random variable which
takes value +1 and —1 for NLOS and LOS propagation
conditions, respectively, and let v € R? be a d-dimensional
random vector of features. By considering an exponential loss
function, a model ¢(v) for classification can be obtained as

¢(v) = arg min IEY|‘,{6_Y&(") |v}. (12)
&:RISR
By observing that
Eqpfe ) [0} = Py = +1| v} )
+(1=P{y=+41|v})e™ (13)

aIEy|v{eiYc(v) | V} o o —c(v)
9c) =-P{y=+1]|v}e

+(1 —P{y =+1|v})e™ (14)

and by setting (14) equal to zero, a closed-form solution for
(12) can be obtained as [70]
P{y=+1[v}

=5 (e i)

Hence, the probability of NLOS conditions given a set of
statistical features of the received signal results in

(15)

ec(u)

V) =Ply = +1|v} = —

— w19

However, solving (12) requires the joint probability distribu-
tion of y and v, which is not known a priori. Therefore, it is
necessary to approximate ¢(v) via empirical risk minimization
(ERM) leveraging a training dataset obtained through a mea-
surement campaign. In particular, the choice of an exponential
loss function in (12) enables the use of the Real Adaboost
algorithm for ERM [70]. Such algorithm aims to fit a set
of Ni, weak learners (i.e., classifiers that perform slightly
better than a random guess) to approximate c(v) via additive
modeling [71]. This is typically obtained using weak learners
with high bias and low variance such as one-level classification
and regression trees (CARTs). The parameters of the weak
learners are fit iteratively, giving at each iteration an increased
weight to the training samples that were misclassified by the
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Algorithm 1 BI model training

1. Initialize the weights wl =

1,2,...,Np.
2. form=1,2,...,NL do
3. Fit a weak learner 7™ (1) to the training data using
the weights wi™,
4. Set the basis function as

5)() = L 1o (

1/Np for n =

~[m]
#lml(v) ) (17)

1 — #m(v)

where 7™l (1) is a NLOS probability estimate obtained
from T (v).

5. Update the training samples weights for the next
iteration as

wlm 1] = qplmle =B ) (18)

6. Normalize the weights such that Zg ) w™t — 1,

7. end for

weak learner fit at the previous iteration [72]. Specifically, let
D = {(Vn,7n)}22, be a training dataset of Ny, realizations
of (v,v). Then, the offline (training) phase of the proposed
method for BI proceeds as described in Algorithm 1 [70],
[73].

In the online phase, the weak learners are combined to
obtain an approximation &(v) of ¢(v) which is given by

Ny,
éw) =Y A"

m=1

19)

where 8™ (1) is the basis function obtained from the m-th
weak learner.’

The probabilistic information provided by BI can reduce to
conventional binary NLOS identification, hereafter referred to
as discretized blockage intelligence (DBI), by simply applying
a threshold to ¥ (v), i.e.,

. +1,
J= {_17

thus resulting in binary NLOS identification as a special case.

Remark: The proposed framework for BI does not rely on
any specific characteristic of v. Hence, any quantity which en-
capsulates information on the wireless propagation conditions
can be exploited by BI. Such information can be both provided
by the 5G network or obtained from different sources (e.g.,
inertial sensors, Bluetooth, and Wi-Fi).

W) =05

W(v) < 0.5 @0

C. Classification and regression trees

One-level CARTs are commonly employed as weak learn-
ers in the Real Adaboost algorithm [70]. In particular, they
split the multidimensional feature space into two regions,
namely, Rfl) and R(_‘Pl), which represent the NLOS and LOS

3Note that (19) provides an approximation of c(1) up to a scale factor.
However, this scale factor does not impact the probabilistic characterization
of NLOS conditions provided 1 (¥) in (16).
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Fig. 3. Block diagram of the training phase of the proposed method for BI. The set W™l = {w

classification regions, respectively. The vector ¢ = [§,7]
contains the parameters that define the regions, i.e., the index
Gge Q=1{1,2,...,d} of the single feature exploited by the
one-level CART in the splitting condition and the respective
threshold 7 € R. Formally, the two regions are given by

={veR vy >0}
'R(_Lpl) :{VERd:l/q <n}.

Let D = {(Vn,7n)}2", be a training dataset, and let
PH and P_; denote the prog)ortlon of the training samples
classified as belonging to R and R” (@) , respectively, where

PH =1- P,l [71]. Then, in an offline (training) phase, ¢ and
7) are obtained by solving the following optimization problem

(‘P) (2121)

(21b)

@ = argmin L(yp) (22)
@
where
=Y P.Ge(p) (23a)
ceC
= Z PCC’(‘P)(l - pCC’(‘P)) (23b)
cecC
v ® n 1 c’ n
Prol) = e )y,

ZvneR(c‘p) Wn

and w, is the weight assigned to the n-th training sample.
Equation (23b) is referred to as weighted Gini impurity
measure and it is used as a cost function for (22) [71]. To
solve the optimization problem in (22), an approach based on
exhaustive search is typically feasible due to the simple form
of (23a) [71]. Let V, denote the set of all the values of the
g-th feature among all the v,, € D. For each ¢ € Q and for
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}ND denotes the weights exploited at the m-th iteration.

each n € V,, (23a) is evaluated, and the couple [¢, 7] which
provides the minimum L(¢) is selected to define the one-level
CART splitting condition.

In the online phase, CARTs provide NLOS probability
estimates as

(V)

Fig. 3 depicts a complete flowchart of the training phase of
the proposed method for BI, comprising the use of CARTs as
weak learners.

=P, L (v) + Py lpw (). (24)

D. BI complexity

Assessing the complexity of localization algorithms is fun-
damental to evaluate their suitability to estimate the UE
position with low-latency constraints. The proposed method
for BI relies on a model obtained through adaptive boosting,
whose complexity depends on the type of weak learners
employed. In particular, the proposed method for BI leverages
one-level CARTSs, which determine a time complexity for
training of O(d Np N1,) and a runtime complexity of O(d Ny,),
where d = 10 considering the vector of features described
in Section III-A [69]. The low runtime complexity of the
proposed method for BI makes it particularly suitable also
for applications involving reduced capabilities devices, such
as IoT and IoT applications [74].

E. BI feature selection

Feature selection is fundamental to optimize BI and discard
less relevant features. For the proposed implementation of BI,
which exploits one-level CARTs as weak learners, a feature
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Fig. 4. Examples of LOS maps for 3GPP (a) InF-DH Case I scenario; and (b) InF-DH Case II scenario. The colormap indicates the number of gNBs in LOS
conditions for each position in the map and the red annuluses indicate the gNBs positions. The coordinates on the axis are in meters.

relevance measure can be obtained by computing the relative
frequency of the use of a feature as a splitting variable for
the Ny, weak learners [71]. Formally, the relevance of the g-th
feature is given by

NL
1 ~lm
By = 5= > L (@™) (25)

where ¢l is the index of the splitting variable exploited by
the m-th one-level CART.

F. Integration of Bl in SVE-based localization

BI can be easily integrated into SVE-based localization
algorithms. For example, the LS algorithm described in Sec-
tion II-B can be transformed into a weighted least squares
(WLS) algorithm modifying (2) as follows

p = arg min (é —0(p)" (I - !I/)(é —6(p)) (26
P
where
Y1) 0 0
0 P(r2) 0
U= . : 27
0 0 ¢(?A@)

and I is a Ny X N, identity matrix [75], [76]. The use of ¥
enables to welght the contribution of each SVE in {0 Yien,
using a value equal to the estimated probability that it was
obtained in LOS conditions.

G. Integration of Bl in SI-based localization

The information provided by NLOS identification can be
integrated into Sl-based localization. For example, a binary
NLOS indicator, such as the one provided by DBI, can be
integrated into Sl-based localization determining two differ-
ent generative models for NLOS and LOS conditions [43].
Specifically, let 1/) be the DBI, with 1/; = +1 and 1/1 = -1
respectively representing the identification of NLOS and LOS
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conditions. Also, let the error probability in detecting propa-
gation conditions be defined by

41 =P{NLOS | ¢ = —1} (28a)
e-y =P{LOS | ¢ = +1}. (28b)
The corresponding SFI is then given by
- 1—e for ¢ = +1
£é(6)0( € ILL(G)“‘( € I)LNL(9)7 01"1{) + (29)
(1 —€41) L(0) + €41 Lnn(0), for o = —

where £x1,(0) and Lr,(6) are SFIs obtained from generative
models tailored to NLOS and LOS propagation conditions,
respectively. However, the approach based on (29) has several
limitations. First of all, conventional NLOS identification
categorizes the possible propagation conditions as binary,
without taking into consideration the different wireless channel
characteristics generated by NLOS propagation. Secondly,
since the models are tailored to one propagation condition,
errors in NLOS identification may harm localization accuracy.
The use of BI can effectively address such issues. In
particular, BI can be integrated directly in the SFI as

L5 p)(0) X fo ) (0,9 (v);0).

Such approach allows modeling the SFI considering also the
information provided by BI. Thus, the single generative model
can describe a wider variety of situations and also mitigate
errors that may occur in the information provided by the
BI via the learning process. Moreover, the use of a single
model for localization enables reducing the time needed for
the UE localization with respect to the approach in (29).
Note that the use of BI can also be interpreted as a two-step
dimensionality reduction in SI-based localization. Specifically,
the high-dimensional received RS is first processed to obtain a
low-dimensional vector of features and then exploited to obtain
BI for computing a one-dimensional probabilistic indicator
that encapsulates rich positional information. Accordingly, the
information encapsulated by BI can be intended not only as a
probabilistic characterization of NLOS propagation conditions,
but also as a normalized indication of the wireless channel
quality.

(30)
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Fig. 5. EPMF of the number of wireless links in LOS conditions for the two
cases considering a UE randomly deployed in the scenario.

TABLE I
MAIN SIMULATION PARAMETERS

Paramter FR1 FR2
Carrier Frequency 3.5GHz 28 GHz
Subcarrier Spacing 30kHz 120kHz
RSs Bandwidth 100MHz | 400 MHz
gNB Antenna Height 8m 8m
gNB Transmitted Power 24 dBm 24 dBm
gNB EIRP Limit - 58dBm
gNB Noise Figure 5dB 7dB
gNB Antenna Radiation Pattern [39] [39]
UE Antenna Height 1.5m 1.5m
UE Transmitted Power 23 dBm 23 dBm
UE EIRP Limit - 43dBm
UE Noise Figure 9dB 13dB
UE Antenna Radiation Pattern [39] [39]

IV. CASE STUDIES

This section quantifies the performance gain enabled by BI
to both SVE-based localization and SI-based localization in
complex wireless environments. We evaluate the localization
performance in an industrial factory environment, namely the
3GPP-standardized InF-DH scenario. The wireless propaga-
tion conditions of such scenario are modeled to represent
a cluttered environment, characterized by a high density of
metallic machinery with irregular structures [77]. Therefore,
the InF-DH is a complex wireless scenario, with critical NLOS
conditions and multipath propagation. Results are reported in
terms of empirical cumulative distribution function (ECDF)
F'(ey,) of the horizontal localization error ey, for two different
case studies in the InF-DH scenario. Specifically, Case I
consists of the baseline configuration in [39] with 18 gNBs,
while Case II considers a different deployment where only
12 gNBs of the original layout are available. Fig. 4a and
Fig. 4b show the gNBs deployment for the two case studies
considered. The background of Fig. 4 illustrates an example
of LOS map (i.e., a map which represents the number of
gNBs in LOS conditions for each position), in the two case
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Fig. 6. Histogram of the feature relevance for the proposed BI method in the
3GPP-standardized InF-DH scenario for RSs transmitted in FR1 and FR2.

studies considered. Moreover, Fig. 5 reports the empirical
probability mass function (EPMF) of the number of gNBs
in LOS for a UE randomly deployed in the two cases. The
localization performance is evaluated in FR1 and FR2 with
carrier frequencies of 3.5 GHz and 28 GHz, respectively [39].
The bandwidths of the PRS and of the SRS are 100 MHz
in FR1 and 400MHz in FR2. The SVEs considered for
localization in both FR1 and FR2 are DL-TOA, UL-TOA and
RTT. AOD measurements are also considered in FR2 [39].

Results are obtained in conditions fully compliant with
3GPP specifications. This enables to evaluate the performance
gain provided by BI under common 3GPP settings considered
by companies and research institutions for comparing local-
ization in 5G and beyond wireless networks. Specifically, the
RSs are generated according to [51], [78], and all the RSs
parameters, including time-frequency allocation, periodicity,
and sequence allocation are implemented according to [39].
The InF-DH wireless channels are generated based on the sta-
tistical models defined in [77] through the QuaDRiGa channel
simulator [79], [80]. The NLOS conditions in the scenario
are determined according to the NLOS probability model for
the InF-DH scenario [77]. Moreover, both the the wireless
channel and the NLOS conditions are generated with spatial
consistency according to [77]. All the setting parameters,
including, transmitted power, equivalent isotropically radiated
power (EIRP) and radiation patterns of both UEs and gNBs
are set according to [39] and summarized in Table I. For
each scenario setting, 300 instantiations of the scenario are
generated, and for each of them, 10 UEs are deployed in the
environment with random positions and orientations. The BI is
obtained according to Section III-B using the set of features
proposed in Section III-A. Specifically, the Real AdaBoost
algorithm is implemented considering Ny, = 600 one-level
CARTs as weak learners fit according to Section III-C.

Fig. 6 shows the feature relevance for the different features
exploited for BI in the InF-DH scenario according to the
method described in Section III-E. It can be observed that
the features contributing to BI are different in FR1 and FR2.
Specifically, time-based features are more effective in FR1
while amplitude-based features are more effective in FR2.
Note that such analysis is scenario-dependent and therefore
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Fig. 7. Localization performance in FR1. The performance is reported in terms of ECDF of the horizontal localization error for SI-based localization with
BI, SI-based localization without BI, and WLS-based localization with BI. The results are reported for (a) Case I; and (b) Case II.

different environments may determine different feature rele-
vances.

The localization performance is evaluated by making use
of a 10-fold cross-validation technique [66]. Specifically, the
data used in the training phase are split as follows:

e 70% of the training data are used for training the BI
model, and identifying the number of iterations N that
minimizes the ranging error in TOA estimation according
to Section II-A. While the selection of the best Ny is
highly beneficial for SVE-based localization, in SI-based
localization such measurement refinement can be irrele-
vant or even detrimental given the ML-based approach
of the algorithm. Therefore, for SI-based localization, a
simpler TOA estimation with N1 = 1 is considered.

e 30% of the training data are used for determining the
generative models for SI-based localization, which consist
of GMMs with 12 components, and estimating the DBI
error probabilities €, and e_; for SI-based localization
with conventional NLOS identification according to (29).

The data not exploited in the training phase are used in the
online phase to quantify the performance gain provided by BI
to Sl-based localization and SVE-based localization consid-
ering the different measurements described in Section II-A.
Results for localization based on the fusion of DL-TOA and
AOD, hereafter referred to as DL-FUS, are also reported.

A. Results in FRI

Fig. 7a shows the ECDF of the horizontal localization error
in FR1 for the Case I of the InF-DH scenario. It can be
observed that WLS-based localization with BI provides an
accuracy of around 6m at the 90th percentile for all the
measurements considered. Moreover, it can be observed that
conventional SI-based localization outperforms WLS-based
localization for all the configurations considered. The use of
BI in SI-based localization enables a further improvement.
In particular, at the 99th percentile, the localization error
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is reduced from around 7m to less than 4m for all the
measurements considered. Note that very similar performance
is obtained with localization based on DL-TOA and on UL-
TOA despite the lowest transmitted power of SRS. Similar
performance is also obtained considering localization based
on RTT.

Fig. 7b shows the ECDF of the horizontal localization
error in FR1 for the Case II of the InF-DH scenario. It can
be observed that WLS-based localization with BI provides
performance comparable to the ones obtained with SI-based
localization at the percentiles over the 90th for all the mea-
surements considered. However, if BI is integrated into SI,
the localization error is reduced from around 8§ m to less than
3.5m at the 90th percentile.

B. Results in FR2

Fig. 8a and Fig. 8b show the ECDFs of the horizontal local-
ization error in FR2 for the Case I of the InF-DH scenario. It
can be observed that SI-based localization with BI considering
DL-TOA, UL-TOA, and RTT measurements provide similar
perfrormance. Specifically, they achieve around 1 m and 1.5m
localization error at the 80th and at the 90th percentile, respec-
tively. Moreover, it can be noticed that also in FR2 SI-based
localization with BI outperforms WLS-based localization with
BI, providing an accuracy improvement of approximately 8 m
for both DL-TOA and UL-TOA at the 90th percentile. Such
performance improvement is even more noticeable at the
99th percentile, where the use of BI in SI-based localization
provides a performance gain of approximately 10m for both
localization using DL-TOA and UL-TOA with respect to
WLS-based localization with BI. Similar performance is ob-
tained also for localization based on RTT measurements. It can
also be noticed that localization based on AOD measurements
determines approximately 3 m of horizontal localization error
at the 80th percentile using Sl-based localization with BI,
which represents a significant improvement when compared to
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Fig. 9. Localization performance for Case II in FR2. The performance is reported in terms of ECDF of the horizontal localization error for (a) SI-based
localization with BI; and (b) SI-based localization with BI versus WLS-based localization with BI.

the performance provided by WLS-based localization with BI.
Considering SI-based localization with BI and fusing DL-TOA
and AOD measurements, a significant localization accuracy
improvement at every percentile is obtained with respect
localization using the single measurements. In particular, such
approach enables sub-meter localization accuracy at the 80th
percentile and 1.56m and 2.67m of horizontal localization
error at the 95th and 99th percentile, respectively. Lastly, it
can be observed that SI-based localization with BI provides
a significant performance gain with respect to Sl-based lo-
calization without BI (Table III). For example, considering
localization with DL-TOA measurements, it can be observed
that BI enables a performance gain of approximatively 2m
and 11 m at the 95th and at the 99th percentile, respectively.

Fig. 9a and Fig. 9b show the ECDFs of the horizontal
localization error in FR2 for the Case II of the InF-DH
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scenario. It can be observed that SI-based localization with BI
considering DL-TOA and RTT measurements provide similar
perfrormance. Specifically, they achieve around 1.5m and
3 m localization error at the 80th and at the 90th percentile,
respectively. Moreover, it can be noticed that at the 95th
percentile, the use of BI in SI-based localization provides a
performance gain of approximatively 7 m for localization using
DL-TOA or RTT measurements with respect to WLS-based lo-
calization with BI. However, if SI-based localization with BI is
obtained considering UL-TOA measurements, the localization
accuracy is around 2.5m and 5m at the 80th and at the 90th
percentile, respectively. It can also be noticed that localization
based on AOD measurements determines approximately 5m
of horizontal localization error at the 80th percentile using
SI-based localization with BI. This represents a significant
improvement when compared to the 9m achieved by WLS-
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TABLE II
RELEVANT LOCALIZATION ERROR PERCENTILES IN FR1 AND PERCENTUAL ACCURACY GAIN WITH RESPECT TO SI-BASED LOCALIZATION (-).
Case 1 Case 11
Configuration 90th 95th 99th 90th 95th 99th
DL-TOA: LS 1431m  (-572%) | 1686m  (-591%) | 24.58m  (-249%) | 16.07m  (-103%) | 1928m  (-68%) | 28.34m  (-53%)
DL-TOA: WLS+BI | 6.0lm  (-182%) | 7.3lm  (-168%) | 1043m  (-48%) | 7.64m  (+3%) 1012 m  (+12%) | 16.1lm  (+13%)
DL-TOA: SI 213m - 273m - 704m - 790m - 11.50m - 1857m  —
DL-TOA: SHDBI | 2.07m  (+3%) 278m  (2%) 942m  (-34%) | 638m  (+19%) | 1032m  (+10%) | 17.09m  (+8%)
DL-TOA: SI+BI 1.89m  (+11%) | 225m  (+18%) | 3.88m  (+45%) | 320m  (+59%) | 5.67m +51%) | 11.22m  (+40%)
UL-TOA: LS 1497m  (-596%) | 17.43m  (-543%) | 2501m  (-254%) | 16.61m  (-112%) | 20.18m  (-75%) | 28.99m  (-54%)
UL-TOA: WLS+BI | 647m  (-201%) | 896m  (-231%) | 23.59m  (-234%) | 859m  (-10%) | 1144m  (+1%) | 26.60m (-41%)
UL-TOA: SI 215m - 27lm - 707m - 784m - 11.50m - 18.84m -
UL-TOA: S4DBI | 2.09m  (+3%) 280m  (-3%) 948m  (-34%) | 640m  (+19%) | 1034m  (+10%) | 1691m  (+10%)
UL-TOA: SI+BI 1.85m  (+14%) | 22Im  (+18%) | 3.79m  (+46%) | 329m  (+58%) | 5.93m (+48%) | 1243m  (+34%)
RTT: LS 1457m  (-568%) | 17.07m  (-532%) | 24.83m  (271%) | 1631m  (-103%) | 19.76m  (-71%) | 28.65m  (-52%)
RTT: WLS+BI 6.13m  (-189%) | 8.08m  (-199%) | 12.38m  (-85%) | 842m  (-3%) 11.08m  (+4%) 1997m  (-6%)
RTT: SI 218m - 270m - 6.70m - 8.03m - 11.57m - 1891m -
RTT: SI+DBI 208m  (+5%) 288m  (-7%) 1019m  (-52%) | 674m  (+16%) | 10.78m  (+7%) 17.06m  (+10%)
RTT: SI+BI 1.87m  (+14%) | 222m  (+18%) | 3.84m  (+43%) | 339m  (+58%) | 6.32m (+45%) | 13.06m  (+31%)
based localization with BI at the same percentile. Similarly to
Case 1, it can be observed that the fusion of DL-TOA and AOD " "
measurements is beneficial to the localization performance. Sl  91.3% 8.7% Sl 815% 18.5%
. . . . . . . =z =z
In particular, with this configuration the localization error is = 2
around 1.2m at the 80th percentile and equal to 1.87m and 3 3
2.98 m at the 90th and 95th percentll'e, r'especFlvely. Lastl?/, it T 04.9% 2 1219 87.9%
can be observed that SI-based localization with BI provides = =
a significant performance gain with respect to Sl-based lo-
18 P g p Do NLOS LOS NLOS LOS
calization without BI (Table III). For example, considering Predicted Predicted
localization with RTT measurements, it can be observed that (a) (b)

BI enables a performance gain of approximatively 7 m at both
the 95th and at the 99th percentile.

For all the configurations considered, it can be observed
that localization in Case II provides worse performance when
compared to Case I. This is due to the reduced number of
gNBs and becomes particularly relevant with UL localization
due to the lower transmitted power of SRS. It can also be
observed that in Case II BI is even more impactful than in Case
I. This is because the total positional information provided by
the SVEs is less with respect to Case I due to the reduced
number of gNBs.

Remark: BI is more effective in FR2 than in FRI. This
is because at high frequencies the signal attenuation due to
NLOS conditions is higher, thus the positional information
encapsulated by the SVEs is lower. Accordingly, BI plays
a fundamental role in performing accurate localization, espe-
cially when the positional information provided by the SVEs
is limited (e.g., in FR2 or with a reduced number of gNBs
available for localization).

C. BI localization performance gain

This section evaluates the performance gain offered by
BIL. In particular, results are obtained for all the localization
techniques considered in the previous sections, including LS-
based localization according to (2), and conventional SI-
based localization with DBI according to (29). The results are
reported at the 90th, 95th, and 99th percentile both in terms
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Fig. 10. Confusion matrix of DBI in (a) FR1; and (b) FR2.

of horizontal localization error and in terms of percentual gain
with respect to conventional SI-based localization without BI.

Table II shows the localization performance in FRI. It
can be observed that the use of BI together with SI-based
localization enables a gain between 11% and 46% for Case
I and between 31% and 59% for Case II when compared
to conventional SI-based localization considering all the per-
centiles and measurements reported. In particular, the average
localization accuracy gain is 25% for Case I and 47% for Case
II. Moreover, it can be noticed that SI-based localization with
DBI is not able to provide a performance gain, despite the
over 90% NLOS identification accuracy of DBI, as reported
in Fig. 10a.

Table III shows the localization performance in FR2. It
can be observed that the use of BI together with SI-based
localization enables a gain between 23% and 70% for Case
I and between 18% and 68% for Case II when compared
to conventional SI-based localization considering all the per-
centiles and measurements reported. In particular, the average
localization accuracy gain is 43% for Case I and 40% in
Case II. Moreover, it can be noticed that SI-based localization
with DBI in almost every case provides worse performance
with respect to conventional SI-based localization, despite
the around 85% NLOS identification accuracy of DBI, as
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TABLE III
RELEVANT LOCALIZATION ERROR PERCENTILES IN FR2 AND PERCENTUAL ACCURACY GAIN WITH RESPECT TO SI-BASED LOCALIZATION (-).
Case I Case 11

Configuration 90th 95th 99th 90th 95th 99th
DL-TOA: LS 1571m  (-740%) 19.52m  (-445%) | 2943m  (-129%) 1727m  (-94%) 21.83m  (-74%) 3299m  (-80%)
DL-TOA: WLS+BI | 9.04m (-383%) 10.94m  (-206%) 14.83m  (-16%) 11.49m  (-29%) 1417m  (-13%) 19.09m  (-4%)
DL-TOA: SI 1.87m - 3.58m - 12.87m - 8.89m - 1257m - 1828m -
DL-TOA: SI+DBI 3.63m (-94%) 8.04m (-125%) 1472m  (-14%) 11.04m  (-24%) 1426m  (-13%) 18.62m  (-2%)
DL-TOA: SI+BI 1.38m (+26%) 1.68 m (+53%) 3.89m (+70%) 3.00m (+66%) 5.03m (+60%) 11.01m  (+40%)
UL-TOA: LS 15.82m  (-556%) 18.59m  (-304%) | 26.00m  (-97%) 17.07m  (-77%) 20.14m  (-52%) 2820m  (-53%)
UL-TOA: WLS+BI | 9.78m (-306%) 11.32m  (-146%) 1500m  (-14%) 1225m  (-27%) 14.63m  (-10%) 21.00m  (-14%)
UL-TOA: SI 241m - 4.60m - 132Im - 9.62m - 13.25m - 1849m -
UL-TOA: SI+DBI 435m (-80%) 8.70 m (-89%) 1519m  (-15%) 1121m  (-17%) 1426m  (-8%) 18.88m  (-2%)
UL-TOA: SI+BI 1.41m (+41%) 1.93m (+58%) 4.66 m (+62%) 5.09m (+47%) 8.78m (+34%) 15.00m  (+19%)
RTT: LS 15.38m  (-554%) 1799m  (-309%) | 24.82m  (-91%) 16.56m  (-82%) 1993m  (-58%) 27.16m  (-48%)
RTT: WLS+BI 891m (-279%) 10.58m  (-140%) 1429m  (-10%) 11.54m  (-27%) 13.83m  (-10%) 19.38m  (-6%)
RTT: SI 2.35m - 440m - 1298m - 9.12m - 1263m - 1833m -

RTT: SI+DBI 3.77m (-60%) 8.15m (-85%) 1573m  (-21%) 1098 m  (-20%) 1405m  (-11%) 18.72m  (-2%)
RTT: SI+BI 1.48m (+37%) 2.02m (+54%) 6.23m (+52%) 2.92m (+68%) 521m (+59%) 11.20m  (+39%)
AOD: LS 9.26 m (-38%) 11.12m  (-20%) 1549m  (-7%) 1299m  (-19%) 15.65m  (-3%) 22.46m  (+2%)
AOD: WLS+BI 8.10m (-21%) 1036m  (-12%) 1524m  (-6%) 10.89m  (+0%) 1430m  (+6%) 22.17m  (+3%)
AQOD: SI 6.70m - 9.25m - 1443m - 1091m - 1518m - 2288m -
AOD: SI+DBI 551m (+18%) 7.50m (+19%) 1245m  (+14%) 8.39m (+23%) 11.42m  (+25%) 19.63m  (+14%)
AQOD: SI+BI 4.75m (+29%) 6.64 m (+28%) 11.16m  (+23%) 7.41m (+32%) 1022m  (+33%) 1871m  (+18%)
DL-FUS: LS 8.77m (-407%) 10.51m  (-311%) 13.81m  (-186%) | 9.95m (-292%) 1205m  (-157%) 1824m  (-92%)
DL-FUS: WLS+BI 6.69 m (-287%) | 7.83m (-206%) 10.82m  (-124%) | 7.74m (-205%) | 9.56m (-104%) 1341m  (-41%)
DL-FUS: SI 1.73m - 2.56m - 4.83m - 2.54m - 4.69 m - 9.49m -
DL-FUS: SI+DBI 1.93m (-12%) 3.27m (-28%) 8.78m (-82%) 6.40 m (-152%) | 8.94m (-91%) 14.09m  (-48%)
DL-FUS: SI+BI 1.28 m (+26%) 1.56 m (+39%) 2.67m (+45%) 1.87m (+26%) 2.98m (+36%) 7.35m (+23%)

reported in Fig. 10b. This is due to the limitations described
in Section III-G of the approach based on (29) and further
demonstrates the importance of the probabilistic information
provided by BI.

Lastly, it can be observed that for all the measurements
considered, LS-based localization is not able to provide satis-
factory localization performance in both FR1 and FR2.

V. CONCLUSION

This paper introduced the concept of blockage intelligence
(BI) to provide a probabilistic characterization of wireless
propagation conditions. Then, it discusses its integration in
both single-value estimate (SVE)-based and soft informa-
tion (SI)-based localization algorithms. In particular, a low-
complexity BI method for providing an indicator that encap-
sulates rich positional information on the non-line-of-sight
(NLOS) conditions is proposed for fifth generation (5G) and
beyond wireless networks. The performance gain provided
by BI is evaluated for different localization algorithms 3rd
Generation Partnership Project (3GPP) industrial scenarios
and compared with conventional binary NLOS identification.
Results show that BI provides significant performance gain to
both SVE-based and SI-based localization. In particular, BI to-
gether with SI-based localization is able to largely outperform
conventional localization approaches in both frequency range
1 (FR1) and frequency range 2 (FR2). Indeed, BI provides
rich positional information which can be leveraged to enhance
location awareness in complex wireless environments. Results

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

in 3GPP indoor factory scenarios show that Bl is a key enabler
to achieve accurate localization in 5G and beyond wireless
networks operating in complex wireless environments.
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