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Inhomogeneous Poisson Sampling of
Finite-Energy Signals With Uncertainties in Rd

Flavio Zabini, Member, IEEE, and Andrea Conti, Senior Member, IEEE

Abstract—Spatiotemporal signal reconstruction from samples
randomly gathered in a multidimensional space with uncertainty
is a crucial problem for a variety of applications. Such a problem
generalizes the reconstruction of a deterministic signal and that
of a stationary random process in one dimension, which was first
addressed by Whittaker, Kotelnikov, and Shannon. In this work
we analyze multidimensional random sampling with uncertain-
ties jointly accounting for signal properties (signal spectrum and
spatial correlation) and for sampling properties (inhomogeneous
sample spatial distribution, sample availability, and non-ideal
knowledge of sample positions). The reconstructed signal spectrum
and the signal reconstruction accuracy are derived as a function
of signal and sampling properties. It is shown that some of these
properties expand the signal spectrum while others modify the
spectrum without expansion. The signal reconstruction accuracy
is first determined in a general case and then specialized for cases
of practical interests. The optimal interpolator function is derived
and asymptotic results are obtained to show the impact of sam-
pling non-idealities. The analysis is corroborated by verifying that
previously known results can be obtained as special cases of the
general one and by means of a case study accounting for various
settings of signal and sample properties.

Index Terms—Multidimensional random sampling, signal re-
construction, inhomogeneous Poisson point process, crowdsourc-
ing, sampling uncertainty.

I. INTRODUCTION

MULTIDIMENSIONAL reconstruction of signals is
a key enabler for emerging applications in various

sectors including array signal processing, magnetic resonance
imaging, seismology, digital communication and control,
software defined radio and networks, vehicular networks, and
environmental monitoring [1]–[12]. Big data [13]–[15] and
crowdsourcing [16]–[19] applications can be associated with
multidimensional random sampling (e.g., to reconstruct spatial
distribution of data).

Classical problems in one dimension are the reconstruction
of a deterministic signal and that of a stationary random
process from a finite or an infinite number of its samples
[20]. On the one hand, the uniform sampling theorem from
Whittaker-Kotelnikov-Shannon [21]–[23] states that a sig-
nal can be exactly reconstructed from its samples if the
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sampling frequency is at least twice the signal bandwidth
(Nyquist rate). On the other hand, random sampling introduces
non-uniformities and uncertainties that challenges the signal
reconstruction. The most important result in deterministic
irregular sampling is the one by Landau [24], who found neces-
sary conditions on the samples density for exact reconstruction
of a finite-energy bandlimited signal. Such a result has been
generalized for multidimensional domain in [25]. The signal
spectrum reconstruction from samples randomly scattered in
time according to a stationary Poisson point process (PPP)1

was analyzed in [27], showing that the signal spectrum can be
reconstructed if the sampling process intensity is greater than
or equal to the Nyquist rate for uniform sampling. In such a
case, the spectrum of the reconstructed signal has an additional
white noise component due to sampling randomness.

Multidimensional random sampling has recently attracted
a vast interest due to various applications in sensor networks
where a signal reconstruction entity collects samples from sen-
sors randomly scattered in an environment [28]–[36]. Existing
works focus on algorithms aiming to improve the reconstruc-
tion accuracy in multidimensional domain, for instance using
quantized spatially correlated data and fusion-center feedback
[37], observation prediction [38], spatial best linear unbiased es-
timation [39], or spatial Gaussian process regression [40]. Other
works extends Marvasti’s approach or its main assumption (sta-
tionary PPP) to the multidimensional domain (homogeneous
PPP) [41]–[47]. The presence of signal sources scattered accord-
ing to a homogeneous PPP is also common in recent works on
wireless communication and localization networks [48]–[52].

However, homogeneous point processes do not always accu-
rately describe the sample spatial distribution in many cases of
interest (e.g., sensors scattered accordingly to different densi-
ties in regions of a monitored area). Moreover, in real scenarios
there might be uncertainties due to imperfect knowledge of sam-
ple location information. Such uncertainties can be detrimental
for signal reconstruction and call, together with inhomogeneous
sample spatial distribution, for a new methodology to analyze
multidimensional random sampling.

Lacaze solved the one-dimensional problem for cases in
which the sampling time is observed or unknown [53]. In the
former case, an extension of the Lagrange interpolation formula
[20] was given, while in the latter the signal estimator was pro-
vided for Gaussian distributed jitter of regular sampling time.2

The extension of the analysis to a d-dimensional space when

1In the case of PPP, the term stationary is used for the time domain, while
homogeneous is widely adopted for multidimensional domain [26].

2The signal reconstruction accuracy, in terms of reconstruction mean-square
error (MSE), is typically obtained by first evaluating the MSE conditioned on
the samples position and then averaging over sample spatial distribution. This
typically results in cumbersome expressions for the signal reconstruction MSE,
as Lacaze also noticed for the one-dimensional case [54].
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sample positions are randomly distributed according to an in-
homogeneous point process and are not perfectly known is not
straightforward. A sampling theorem for non-stationary random
process (non-stationarity is referred to the signal to be recon-
structed) has been presented by Gardner in a two-dimensional
domain [55], and then generalized by Sharma and Mehta to the
multidimensional case [56]. The case of a non-stationary sam-
pling process (non-stationarity is here referred to the sampling
process) is still an open problem. Inhomogeneous distribution
of wireless nodes according to a modified Ginibre point pro-
cess is considered in [57] for communication among nodes with
repulsive scattering in R2 . However this kind of distribution
implicitly assumes a circular symmetry that well fits cellular
scenarios, but can be less appropriate in other applications,
such as those based on sensor networks. We consider a gen-
eral scenario where the sample spatial distribution depends on
external causes and is not tailored to the sampled signal (e.g.,
applications to environmental sensing [41] and network inter-
ference characterization [48]). Therefore, emerging approaches
such as compressed sensing [58]–[60] can be unsuitable
in such conditions. A framework for the analysis of inhomoge-
neous multidimensional random sampling without making any
strong assumption on the sampled signal (e.g., sparse represen-
tation) is missing in the literature. In [61] a geometrical approach
to reconstruct a signal from arbitrary samples in time is proposed
and reconstruction error bounds are provided, but its application
to a multidimensional spatial domain is not straightforward.

This paper analyzes the reconstruction of a finite-energy
signal (e.g., the instantiation of a random process in a finite
space) from samples randomly gathered with uncertainties
in Rd according to an inhomogeneous Poisson sampling
process (PSP). The reconstructed signal spectrum and the
signal reconstruction accuracy are derived as a function
of both the signal properties (signal spectrum and spatial
correlation) and sampling properties (inhomogeneous spatial
distribution, sample availability, and non-ideal knowledge of
sample positions). For the reconstructed signal spectrum, we
determine the properties that expand the spectrum and those
that modify it in-band (whose effects can thus be compensated
by proper filtering). For the signal reconstruction, we determine
the reconstruction accuracy for an omnicomprehensive case by
directly evaluating the unconditioned MSE in closed-form. In
addition, the optimal linear space-invariant (LSI) interpolator3

expression is determined and asymptotic MSE expressions
(for large sampling process intensity with respect to the signal
band cardinality) are derived. It will be shown that previously
known results can be obtained as corollaries of the proposed
theorems. A case study accounting for various signal and
sample properties also corroborates the analysis.

The remainder of the paper is organized as in the following.
Section II presents the sampling process and the uncertainties
models. Section III describes the signal reconstruction and pro-
vides theorems and corollaries for both the reconstructed signal
spectrum and the reconstruction MSE. Section IV analyzes the
interpolation filtering. Section V shows results for a case study.
Final remarks are given in Section VI.

3In a multidimensional domain the term space-invariant takes the place of
the usual term time-invariant in the time-domain.

TABLE I
MAIN QUANTITIES AND OPERATORS USED THROUGHOUT THE PAPER

Notations: Quantities and operators used throughout the pa-
per are reported in Table I.

II. MULTIDIMENSIONAL RANDOM SAMPLING MODEL

We now model the observed multidimensional signal and de-
scribe the sampling process. A simple example is also provided
for clarification of each considered aspect.

A. Multidimensional Signal

Consider a multidimensional signal w(x) ∈ C, instantia-
tion of the observed process w(x) at position x ∈ Rd , with
spatial frequency band Bw ⊂ Rd of cardinality |Bw|.4 Let
z(x) � w(x)1A(x) be the truncated version of w(x), in
A ⊆ Rd with Fourier transform (FT) Z(ν) � F{z(x)}(ν) =∫
Rd z(x)e−j2πν·xdx and finite energy Ez . By defining the

4The maximal bandwidth-per-dimension is Bw � min{� : Bw ⊆ C(d )
�

},

where C(d )
�

� {ν :
∏d−1

i=0 rect( ν i
2� ) > 0} and rect(x) � 1 for |x| ≤ 1/2 and

0 otherwise.
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Fig. 1. Example of signal to be reconstructed and its normalized ESD in R2 , respectively described by (2) and (3) with B0 = B1 = B = 10−4 [m-1].

spatial frequency band B of z(x) as the set of all ν
for which |Z(ν)| is significantly different than zero, |B| =
|Bw| + O( 1

ld
) where l � max{� : C(d)

� ⊆ A} [41]. The sig-
nal bandwidth-per-dimension, in the spatial frequency domain,
is B � min{� : B ⊆ C(d)

� }. The truncated signal z(x), in-
stantiation of the random process z(x) � w(x)1A(x), is re-
constructed by interpolating a numerable set of its samples.
The ESD of z(x) is Ez (ν) = F{

∫
Rd z(x)z†(x − τ )dx}(ν) =

|Z(ν)|2 , while that of z (x) is Ez(ν) = F{
∫
Rd E{z(x)z†(x −

τ )}dx}(ν) = E{|Z(ν)|2} with Z(ν) � F{z(x)}(ν).
Define the normalized spatial coordinate x̆ � 2Bx and spatial

frequency ν̆ � ν/ (2B). The FT of a normalized signal z̆ (x̆) �
1√

Ez (2B )d / 2 z
( x̆

2B

)
(unitary bandwidth and energy) is

Z̆ (ν̆) =
(2B)d/2

√
Ez

Z (2Bν̆) (1)

and the normalized ESD of z (x) is Ĕz (ν̆) � (2B )d

Ez
Ez (2Bν̆).

From (1), Ĕz (ν̆) = Ez̆ (ν̆) = |Z̆ (ν̆) |2 and
∫
Rd Ĕz (ν̆) dν̆ = 1.

Example: Consider the reconstruction of process instantia-
tion (see Fig. 1(a)) expressed by [46]5

z (x) =
√

Ez

d−1∏

i=0

(2Bi)
1
2 sinc (2Bixi) (2)

for which (see Fig. 1(b))

Ĕz (ν̆) =
d−1∏

i=0

1
2bi

rect
(

ν̆i

2bi

)

(3)

where bi � Bi/ (2B) is the normalized bandwidth-per-
dimension.

B. Inhomogeneous Sampling Process

Consider a sampling process in which samples are gathered at
independent random positions in Rd according to an inhomoge-
neous PPP Π with intensity λ (x) at x ∈ Rd [62]. The sampling
intensity λ (x) is defined so that E {NΠ (A)} =

∫
A λ (x) dx for

any A ⊆ Rd [26], where NΠ (A) is the number of points in A

5The sinc (x) � sin (πx) / (πx) for x �= 0 and to 1 for x = 0.

Fig. 2. Example of inhomogeneous PSP intensity in R2 (d = 2) described
by (5) with λ = 10−3 [m−2 ], ai = 0.1, and Bλi = 10−4 [m−1 ].

(counting measure). The average sampling intensity in Rd can

be written as λ = lim�→∞E
{

NΠ(C(d)
� )

}
/|C(d)

� |.6 The random

sampling process is7

S (x) �
∑

n∈NΠ

δ (x − xn ) (4)

where NΠ denotes the index set of Π. The random sampling
process has mean μS(x) = E

{∑
n∈NΠ

δ(x − xn )
}

, with d-
dimensional FT US(ν) = E

{∑
n∈NΠ

e−j2πν·xn
}

, and autocor-

relation RS(x, τ ) � E {S(x)S(x − τ )}.
Example: Consider samples randomly distributed according

to an inhomogeneous PSP with intensity λ (x) given by (see
Fig. 2)

λ (x) = λ

d−1∏

i=0

[1 + ai sin (2πBλixi)] (5)

where ai ∈ [0, 1] is the inhomogeneity amplitude parameter and
bλi

� Bλi/ (2B) is the inhomogeneity frequency parameter.

6The homogeneous case can be seen as a particular case of the inhomogeneous
case with λ (x) = λ, ∀x ∈ Rd .

7The notation based on Dirac delta generalized functions will simplify the
analysis of signal reconstruction via interpolation filtering.

Authorized licensed use limited to: Università degli Studi di Ferrara. Downloaded on June 05,2023 at 10:07:20 UTC from IEEE Xplore.  Restrictions apply. 



4682 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 18, SEPTEMBER 15, 2016

C. Sample Loss Model

Consider a set of independent, identically distributed (IID)
binomial random variables (RVs) an for n ∈ NΠ . Each an

takes value 1 or 0 when the corresponding n-th sample at
xn is available or unavailable for signal reconstruction, respec-
tively, with probabilities qn = q (xn ) = P {an = 1} = E {an}
and pn = 1 − qn . The q (x) has FT Q (ν) and the an ’s are
independent of Π.8 The average sample availability is q =
lim�→∞E

{ 1
NΠ (C(d )

� )

∑
n∈N�

qn

}
where N� denotes the index set

of Π ∩ C(d)
� .

The random sampling process with losses, together with its
mean and its autocorrelation function, can respectively be writ-
ten as

L (x) �
∑

n∈NΠ

anδ(x − xn ) (6)

with μL (x) � E {L (x)} = q (x) μS (x) and RL (x, τ ) �
E {L (x)L (x − τ )}. The d-dimensional FT of μL (x) is

UL (ν) = (Q ∗ US) (ν) . (7)

D. Sample Position Uncertainties Model

Consider a multidimensional random sampling process with
uncertainties in sample positions. In particular, the n-th sample
position xn is imperfectly known as x̂n , with a corresponding
sample position error esn � x̂n − xn [46]. The estimated posi-
tion errors esn are zero-mean IID RVs, and independent of an

and xn .9 The characteristic function (CF) of esn is Ψes (jν) �
E {ejν·es } and Φes (ν) � F {fes (es)} (ν) = Ψes (−j2πν).10

The signal sampled with uncertainties (losses and sample
position errors) is an instantiation of the process zu (x) having
FT Zu (ν) given by

zu (x) �
∑

n∈NΠ

anz (xn ) δ
(
x − x̂n

)
(8a)

Zu (ν) =
∑

n∈NΠ

anz (xn ) e−j2πν ·̂xn . (8b)

E. Interpolation Filtering

The reconstruction of z (x) from its samples via LSI filtering
is

ẑ (x) = (zu ∗ θ) (x) =
∑

n∈NΠ

anz (xn ) θ
(
x − x̂n

)
(9)

where θ (x) ∈ R is the interpolation filtering function with d-
dimensional FT Θ (ν).11 The d-dimensional band Bθ of the

8For example, consider a network of sensors with different energy consump-
tions leading to different abilities to transmit information to the interpolation
entity (the charge of a sensor is independent of that of other sensors).

9The probability distribution function (PDF) of the sample position error
depends on the technology used to determine the position of the n-th sample in
Rd [63].

10The index n is avoided for notational simplicity since the sample position
errors are IID.

11Hereafter, we will refer to Θ (ν) as interpolator function.

interpolator has cardinality12

|Bθ | �
∫
Rd |Θ (ν) |2dν

|Θ (0) |2
. (10)

Recall that for regular sampling at Nyquist rate-per-
dimension 2B the ideal low-pass (ILP) interpolation filter-
ing is commonly employed, i.e., Θ (ν) = 1

(2B )d 1B (ν) thus

|Bθ | = |B| = (2B)d .13 For random sampling in Rd , two over-
sampling factors are considered

ιλ � λ

(2B)d
(11a)

ιBθ
� |Bθ |

(2B)d
(11b)

respectively for the sampling intensity and for the interpolator
band.

III. MULTIDIMENSIONAL SIGNAL RECONSTRUCTION

Theorems for the reconstructed signal spectrum and the signal
reconstruction MSE with multidimensional random sampling
are provided in the following.

A. Reconstructed Signal Spectrum

The power spectral density (PSD) of a one-dimensional signal
reconstructed via random sampling was first studied by Shapiro
and Silverman who provided sufficient conditions for alias-free
sampling [64]. Then, Beutler and Masry derived expressions for
PSD reconstruction through random sampling [65]–[70]. The
same kind of problem was also addressed by Parzen in the case
of a randomness due sample losses [71]. The aforementioned
results are available for stationary point processes in one di-
mension. We extend them for inhomogeneous (non-stationary)
multidimensional random sampling, starting from the next two
lemmas.

Lemma 1: Consider a finite-energy signal y : Rd → C sam-
pled with losses according to

yL (x) � y (x) L (x) (12)

and define the functional

ΥL [y] �
∫

Rd

|y (x) |2μL (x) dx. (13)

The ESD of yL (x) is found to be14

EyL (ν)= E
{ ∑

n∈NΠ

∑

k∈NΠ

anaky (xn ) y† (xk ) e−j2πν·(xn −xk )
}

(14)
and

ΥL [y] = E
{ ∑

n∈NΠ

qn |y (xn ) |2
}

. (15)

12In one dimension, this cardinality corresponds to twice the effective band-
width of the interpolator.

13It corresponds to θ (x) = sinc (2Bx) in one-dimension (x ∈ R).
14The sampled signal yL (x) becomes yS (x) when an = 1∀n ∈ NΠ (i.e.,

L ≡ S) with corresponding ESD EyS (ν).
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Proof: See Appendix A. �
Lemma 2: Consider a finite-energy signal y : Rd → C sam-

pled without losses according to

yS (x) � y (x) S (x) (16)

and define the functional

ΥS [y] �
∫

Rd

|y (x) |2μS (x) dx . (17)

It results

US (ν) = Λ (ν) (18a)

EyS (ν) = | (Λ ∗ Y ) (ν) |2 + ΥS [y] (18b)

where Λ (ν) � F {λ (x)} (ν) , Y (ν) � F {y (x)} (ν), and

ΥS [y] = E
{ ∑

n∈NΠ

y (xn ) |2
}

. (19)

Proof: See Appendix B. �
To determine the ESD of the reconstructed signal, the previ-

ous lemmas are applied to the signal z (x).
Lemma 3: The ESD of a signal sampled with losses is found

to be

EzL (ν) = Ezq s (ν) − ΥS [zq ] + ΥL [z] (20)

where Ezq s (ν) is the ESD of zqs (x) � zq (x)S (x) and
zq (x) � q (x) z (x).

Proof: See Appendix C. �
Lemma 4: The mean of the FT and the mean of the ESD for

the process zu (x) are respectively given by

Uzu(ν) � E {Zu (ν)} = Φe s (ν) (UL ∗ Z) (ν) (21a)

Ezu(ν) � E
{
|Zu (ν) |2

}

= |Φe s (ν)|2EzL (ν) + ΥL [z]
[
1 − |Φe s (ν)|2

]
. (21b)

Proof: See Appendix D. �
The ESD of the reconstructed signal is now derived.
Theorem 1 (ESD of the Reconstructed Signal): The ESD of

the signal ẑ (x) reconstructed with general interpolation func-
tion Θ (ν) is found to be

Eẑ (ν) = |Θ (ν) |2 |Φes (ν)|2 | (Λ ∗ Q ∗ Z) (ν) |2

+ |Θ (ν) |2αλ q Ez (22)

where

α �
∫
Rd λ (x) q (x) |z (x) |2dx

λ q Ez

. (23)

Proof: Apply Lemmas 1–4 as shown in Appendix E. �
Remark 1: The first term in (22) represents the spectrum

of the original signal modified by the effects of random sam-
pling and sample position errors in addition to those of inter-
polation filtering, while the second term represents an additive
noise.

Remark 2: Consider a sampling intensity λ (x) and a
sample availability q (x) both band-limited with maximum

spatial bandwidth-per-dimension Bλ and Bq , respectively.15

Therefore, (Λ ∗ Q ∗ Z) (ν) can be considered extinguished
outside CB s where Bs � B + Bλ + Bq . From Theorem 1, the
interpolator band in Rd has to contain all the spectral com-
ponents of (Λ ∗ Q ∗ Z) (ν) to reconstruct the original signal
z (x). Thus, the Bλ and Bq respectively represent the increase
per dimension of the Nyquist sampling rate respectively due to
the inhomogeneous sampling intensity and the inhomogeneous
sample availability.

Remark 3: According to Theorem 1, while the effects of
sample position errors over the reconstructed signal ESD can
be compensated by a proper interpolator those of the inho-
mogeneous sampling intensity causes a distortion, due to the
convolution (Λ ∗ Q ∗ Z) (ν), which cannot be compensated by
a realizable linear filtering (as it will be shown in Section IV).

Corollary 1 (Homogeneous PSP With General Interpola-
tor): In case of homogeneous PSP with λ (x) = λ and homo-
geneous sample availability with q (x) = q, the ESD of the
reconstructed signal ẑ (x) with general interpolation function
Θ (ν) results in

Eẑ (ν) = |Θ (ν) |2 q2 λ
2 |Φes (ν)|2Ez (ν) + |Θ (ν) |2qλEz .

(24)
Proof: For λ (x) = λ and q (x) = q, (23) leads to α = 1.

Thus, (22) reduces to (24) since Λ (ν) = λδ (ν) and Q (x) =
qδ (ν) . �

Remark 4: In the absence of sample losses (q = 1) and of
sample position errors (Φes (ν) = 1), Corollary 1 reduces to the
result of Marvasti [27] after ILP interpolation considering the
ESD instead of the PSD.

To highlight the effects of inhomogeneities (in sample distri-
bution and in sample loss), of signal bandwidth-per-dimension,
and of sample position errors, the following functions are
defined in terms of the normalized spatial frequency. The
normalized spatial frequency bands of the signal and of the
interpolator function are defined as B̆ � {ν̆ s.t. 2Bν̆ ∈ B} and
B̆θ � {ν̆ s.t. 2Bν̆ ∈ Bθ}, respectively. The normalized Λ (ν)
and Q (ν) are

Λ̆ (ν̆) � (2B)d

λ
Λ (2Bν̆) (25a)

Q̆ (ν̆) � (2B)d

q
Q (2Bν̆) . (25b)

The standard deviation of the position error normalized to
1/ (2B), proportional to the signal spatial correlation per
dimension, and the normalized function Φ̆ (ν̆) are16

σ̆es � 2B σes (26a)

Φ̆ (σes ν) � Φes (ν) . (26b)

From (26a) and (26b) it follows that Φ̆ (σ̆es ν̆) = Φes (2Bν̆).
The interpolation function and the interpolator parameter are

15The spectra of λ (x) and q (x) do not contain significant component outside
CB λ

and CB q , respectively.
16Observe that the Φ̆ (ν) in (26b) is equal to the FT of the PDF for the

normalized sample position error es/σe s .
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Fig. 3. Example of normalized reconstructed signal ESD in R2 , corresponding to the case of Fig. 1, for pn = p = 10−3 , ∀n, ιλ = 2.5 × 104 , and ιBθ
= 25.

respectively normalized as

Θ̆
( ν

2B

)
� Θ (ν)

Θ (0)
= κθ Θ (ν) (27a)

κ̆θ � κθ

(2B)d
. (27b)

The normalized ESD of the reconstructed signal is

Ĕẑ (ν̆) � (2B)d

Ez
Eẑ (2Bν̆) . (28)

Theorem 2 (Normalized ESD of the Reconstructed Signal):
The normalized ESD of the reconstructed signal ẑ (x) with
general normalized interpolation function Θ̆ (ν̆) is found to be

Ĕẑ (ν̆) = q ιλ
|Θ̆ (ν̆) |2

κ̆2
θ

[
q ιλ

∣
∣Φ̆

(
σ̆es ν̆

)∣
∣2

∣
∣
(
Λ̆ ∗ Q̆ ∗ Z̆

)
(ν̆)

∣
∣2 + α

]
.

(29)
Proof: See Appendix F. �
Remark 5: Theorem 2 shows that random sampling and sam-

ple position errors affects the signal-to-sampling noise ratio
SNR at the interpolator output as

SNR =
q ιλ

∫
Rd

∣
∣Θ̆ (ν̆)

∣
∣2

∣
∣Φ̆ (σ̆es ν̆)

∣
∣2

∣
∣
(
Λ̆ ∗ Q̆ ∗ Z̆

)
(ν̆)

∣
∣
2
dν̆

α
∫
Rd

∣
∣Θ̆ (ν̆)

∣
∣2dν̆

.

Thus, SNR = q ιλ

ιBθ

βθ

α that is greater than or equal to 1 iff

qλ ≥ α
ιBθ

βθ
(2B)d (30)

where βθ is given by (37b). The factor αιBθ
/βθ represents the

increasing in the average intensity of available samples with re-
spect to Nyquist rate for obtaining SNR ≥ 1(random sampling
generates sampling noise) in Rd .17

A simple example is now illustrated.
Example: Fig. 3 shows the normalized ESD of the recon-

structed signal for the case of Fig. 1 with homogeneous or inho-
mogeneous PSP in presence or absence of Gaussian distributed
sample position errors. According to Theorem 2, it can be ob-
served in Fig. 3(a)–(d) that: (i) the randomness of the sampling
process generates itself a background white noise component;
(ii) sample position errors cause a spectrum distortion without
spectrum enlargement; and (iii) inhomogeneity of the sample
process leads to a distortion with spectrum enlargement.

B. Signal Reconstruction MSE

We now analyze the signal reconstruction error for multidi-
mensional inhomogeneous random sampling with sample posi-
tion uncertainty.

The signal reconstruction MSE is defined as

εs � E
{∫

Rd |ẑ (x) − z (x) |2dx
}

Ez
(31)

17This result generalizes the important one in [54] that was obtained for
the one-dimensional homogeneous case with ILP interpolator and absence of
sample position errors.
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which measures the distance between the reconstructed ver-
sion ẑ (x) and the original target signal z (x), normalized to its
energy.

Theorem 3 (Signal Reconstruction MSE): For an inhomoge-
neous PSP with intensity λ (x), sample availability q (x), and
sample position errors with Φes (ν), the signal reconstruction
MSE is found to be

εs =
qλ

κ2
θ

(
α |Bθ | + βθ qλ

)
− γθ

2qλ

κθ
+ 1 (32)

where α is given in (23) and

βθ�
∫

Rd

|κθ Θ (ν) |2 |Φes (ν) |2 |(Λ ∗ Q ∗ Z) (ν)|2

λ
2
q2 Ez

dν (33a)

γθ�
∫

Rd

R

{
κθ Θ (ν) Φes (ν)

(Λ ∗ Q ∗ Z) (ν) Z† (ν)
λ q Ez

}
dν .

(33b)

Proof: Apply Lemma 4 and Theorem 1 as shown in Ap-
pendix G. �

The parameters α, βθ , and γθ of (32) are evaluated in the next
section for some cases of interest.

Define two modified ESD as

ĔZ̆ ,Q̆ ,Λ̆ ,|Θ̆ |2 (ν̆) � |Θ̆ (ν̆) |2 |
(
Λ̆ ∗ Q̆ ∗ Z̆

)
(ν̆) |2 (34a)

ĔZ̆ ,Q̆ ,Λ̆ ,Θ̆ (ν̆) � R

{
Θ̆ (ν̆)

(
Λ̆ ∗ Q̆ ∗ Z̆

)
(ν̆) Z̆† (ν̆)

}
(34b)

which, in the case of homogeneous PSP and homogeneous sam-
ple availability, are proportional to the signal ESD when an ILP
interpolator filter is used. Remember that, given a continuous
function ϕ (ν) with ϕ (0) = 1 and a norm-integrable function
f (ν), the ϕ-mean of f (ν) for any σ ∈ R is [72]

Mσ,ϕ {f (ν)} �
∫

Rd

ϕ (σν) f (ν) dν. (35)

Theorem 4 (Signal Reconstruction MSE with Normalized
Quantities): Under the same assumptions of Theorem 3, the
signal reconstruction MSE with normalized quantities is found
to be

εs =
qιλ
κ̆2

θ

(α ιBθ
+ βθ qιλ) − γθ

2qιλ
κ̆θ

+ 1 (36)

with

α = M1,Z̆ †∗Z̆−

{(
Λ̆ ∗ Q̆

)
(ν̆)

}
(37a)

βθ = M
σ̆e s ,|Φ̆ |2

{
ĔZ̆ ,Q̆ ,Λ̆ ,|Θ̆ |2 (ν̆)

}
(37b)

γθ = Mσ̆e s ,Φ̆

{
ĔZ̆ ,Q̆ ,Λ̆ ,Θ̆ (ν̆)

}
(37c)

where Z̆− (ν̆) � Z̆ (−ν̆).
Proof: See Appendix H. �
Note that the sample position errors affect the parameters βθ

and γθ only, while they do not affect α.
Hereafter, Theorem 4 is used to determine novel results on

the signal reconstruction MSE for some cases of interest on the
sample position errors.

Corollary 2 (Gaussian Distributed Sample Position Errors):
For zero-mean Gaussian IID sample position errors with nor-
malized variance σ̆2

es
, general interpolator, inhomogeneous PSP

with intensity λ (x), and sample availability q (x), the signal
reconstruction MSE is given by (36) with α as in (37a) and

βθ =
(
4π tσ̆e s

) d
2 W tσ̆ e s

{
ĔZ̆ ,Q̆ ,Λ̆ ,|Θ̆ |2 (ν̆)

}
(0) (38a)

γθ =
(
8π tσ̆e s

) d
2 W2tσ̆ e s

{
ĔZ̆ ,Q̆ ,Λ̆ ,Θ̆ (ν̆)

}
(0) (38b)

where tσ̆e s
� (4π σ̆es )

−2 and

W t {f (ν)} (x) � 1

(4π t)
d
2

∫

Rd

f (ν) e−
‖x−ν‖2

4 t dν. (39)

is the Weierstrass transform [73] with parameter t for f (ν) in
Rd , where ‖ · ‖ denotes the Euclidean norm.

Proof: From (26b), the Gaussian hypothesis on es gives
Φ̆ (σ̆es ν̆) = e−2π 2 ‖σ̆e s ν̆‖2

. Thus, from (39), expressions (37b)
and (37c) result in (38a) and (38b), respectively. �

Corollary 3 (Absence of Sample Position Errors): In the ab-
sence of sample position errors, general interpolator, inhomo-
geneous PSP with intensity λ (x), and sample availability q (x),
the signal reconstruction MSE results in (36) with α as in (37a)
and

βθ =
∫

Rd

ĔZ̆ ,Q̆ ,Λ̆ ,|Θ̆ |2 (ν̆) dν̆ = F−1
{
ĔZ̆ ,Q̆ ,Λ̆ ,|Θ̆ |2 (ν̆)

}
(0)

(40a)

γθ =
∫

Rd

ĔZ̆ ,Q̆ ,Λ̆ ,Θ̆ (ν̆) dν̆ = F−1
{
ĔZ̆ ,Q̆ ,Λ̆ ,Θ̆ (ν̆)

}
(0) .

(40b)

Proof: In an absence of sample position errors, we have
fes (es) = δ (es) and Φes (ν) = 1, therefore (26b) leads to
Φ̆ (ν̆) = 1. Thus, (37b) and (37c) lead to (40a) and (40b), re-
spectively. �

To better understand the effects of sample position errors
on the signal reconstruction MSE, consider the following two
limit cases.

Corollary 4 (Small Sample Position Errors With Respect
to Signal Spatial Correlation): Consider an inhomogeneous
PSP with intensity λ (x) and sample availability q (x). For
σes � 1/ (2B) the signal reconstruction MSE results in (36)
with parameters α, βθ , γθ as for Corollary 3 (absence of sample
position errors).

Proof: Since limσ→0Mσ,ϕ {f (ν)} =
∫
Rd f (ν) dν for any

f : Rd → C [72], (37b) and (37c) reduce to (40a) and (40b),
respectively. �

Corollary 5 (Large Sample Position Errors with Respect to
Signal Spatial Correlation): Consider an inhomogeneous PSP
with intensity λ (x) and sample availability q (x). For σes �
1/ (2B) the signal reconstruction MSE results in

εs = α
qιλ
κ̆2

θ

ιBθ
+ 1 . (41)

Proof: Since Φ̆ is the FT of a PDF, Φ̆ (σν̆) and |Φ̆ (σν̆) |2
tend to 0 for σ approaching infinity. Thus (37b) and (37c) tend
to 0 for σ̆es approaching infinity, and from Theorem 4 with
βθ = γθ = 0 we obtain (41). �
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Remark 6: Corollaries 4 and 5 indicate that the impact of
sample position errors on the signal reconstruction MSE does
not depend on the value of position error variance itself, but
rather on its normalized value with respect to the spatial cor-
relation of the signal. The higher is the spatial correlation of
the signal, the more negligible results the additive MSE due to
sample position errors up to the point where Corollary 3 holds.

Corollary 6 (Homogeneous PSP): Consider a homogeneous
PSP with intensity λ (x) = λ, sample availability q (x) = q, and
presence of sample position errors. The signal reconstruction
MSE for a general interpolator results in (36) with

α = 1 (42a)

βθ = M
σ̆e s ,|Φ̆ |2

{
|Θ̆ (ν̆) |2 Ĕz (ν̆)

}
(42b)

γθ = Mσ̆e s ,Φ̆

{
R

{
Θ̆ (ν̆)

}
Ĕz (ν̆)

}
. (42c)

Proof: By substituting the FT of λ (x) = λ and q (x) = q in
(25a) and (25b), respectively, we obtain

Λ̆ (ν̆) = (2B)dδ(2Bν̆) = δ(ν̆) (43a)

Q̆ (ν̆) = (2B)dδ(2Bν̆) = δ(ν̆) (43b)

in the sense of distributions. Thus, from (37a) α results in

α = M1,Z̆ †∗Z̆−
[δ] =

(
Z̆ ∗ Z̆†

−

)
(0) =

∫

Rd

|Z̆ (ν̆) |2dν̆ = 1 .

Also, (34b) and (34a) lead to

ĔZ̆ ,Q̆ ,Λ̆ ,Θ̆ (ν̆)= R

{
Θ̆ (ν̆)

}
Ĕz (ν̆)

ĔZ̆ ,Q̆ ,Λ̆ ,|Θ̆ |2 (ν̆)= |Θ̆ (ν̆) |2 Ĕz (ν̆)

which gives (42b) and (42c) from (37b) and (37c). �
Remark 7: Corollary 6 shows that the effect of sample posi-

tion errors is present in βθ and γθ jointly with Θ̆ (ν̆). Therefore,
it can be mitigated by a proper interpolation filtering.

IV. INTERPOLATION FILTERING

The impact of the interpolation filter on the signal reconstruc-
tion MSE is now analyzed.

A. ILP Interpolator

Recent works related to sensor networks consider an ILP
interpolation filter18 in the form of

Θ (ν) =
1
κθ

1Bθ
(ν) (45)

without accounting for inhomogeneous PSP and sample position
errors [75].

Corollary 7 (ILP Interpolator): In the setting of Theorem 4,
for ILP interpolator Θ̆ (ν̆) = 1B̆θ

(ν̆) with B̆s ⊆ B̆θ , where B̆s �
{ν̆ s.t. 2Bν̆ ∈ CB s }, the signal reconstruction MSE results in

18Numerical aspects related to practical implementations of such interpolator
are addressed in [74].

(36) with α as in (37a) and

βθ = M
σ̆e s ,|Φ̆ |2

{
|
(
Λ̆ ∗ Q̆ ∗ Z̆

)
(ν̆) |2

}
(46a)

γθ = Mσ̆e s ,Φ̆

{
R

{(
Λ̆ ∗ Q̆ ∗ Z̆

)
(ν̆) Z̆† (ν̆)

}}
. (46b)

These reduce, for zero-mean Gaussian IID sample position er-
rors with normalized variance σ̆2

es
, to

βθ =
(
4π tσ̆e s

) d
2 W tσ̆ e s

{
|
(
Λ̆ ∗ Q̆ ∗ Z̆

)
(ν̆) |2

}
(0) (47a)

γθ =
(
8π tσ̆e s

) d
2 W2tσ̆ e s

{
R

{(
Λ̆ ∗ Q̆ ∗ Z̆

)
(ν̆) Z̆† (ν̆)

}}
(0).

(47b)

In the absence of sample position errors

βθ =
∫

Rd

λ̆2 (x̆) q̆2 (x̆) |z̆ (x̆) |2dx̆ (48a)

γθ =
∫

Rd

λ̆ (x̆) q̆ (x̆) |z̆ (x̆) |2dx̆ = α (48b)

where z̆ (x̆) , λ̆ (x̆), and q̆ (x̆) are respectively the inverse FTs
of Z̆ (ν̆) , Λ̆ (ν̆), and Q̆ (ν̆).

Proof: Since z (x) is band-limitated, from (1), (25a), and
(25b) it follows that (Λ̆ ∗ Q̆ ∗ Z̆)(ν̆) does not have spec-
tral components outside B̆s . From Theorem 4, by substituting
Θ̆ (ν̆) = 1B̆θ

(ν̆) in (34a) and (34b), we obtain (46a) and (46b).
In addition, (47a) and (47b) follow from Corollary 2, (34a),
and (34b). From (37a), (46a), and (46b) using Φ̆ (ν̆) = 1 and
Parseval relation, we obtain (48a) and (48b). �

Corollary 8 (ILP Interpolator—Homogeneous PSP): In the
setting of Corollary 6, for ILP interpolator Θ̆ (ν̆) = 1B̆θ

(ν̆)
with B̆ ⊆ B̆θ , the signal reconstruction MSE results in (36) with
α = 1 and

βθ = M
σ̆e s ,|Φ̆ |2

{
Ĕz (ν̆)

}
(49a)

γθ = Mσ̆e s ,Φ̆

{
Ĕz (ν̆)

}
. (49b)

These reduce, for zero-mean Gaussian IID sample position er-
rors with normalized variance σ̆2

es
, to

βθ =
(
4π tσ̆e s

) d
2 W tσ̆ e s

{
Ĕz (ν̆)

}
(0) (50a)

γθ =
(
8π tσ̆e s

) d
2 W2tσ̆ e s

{
Ĕz (ν̆)

}
(0) . (50b)

In the absence of sample position errors βθ = γθ = 1.
Proof: Apply (43a) and (43b) to results of Corollary 7. �
Remark 8: From Corollary 8 with absence of sample posi-

tion errors the signal reconstruction MSE reduces to

εs =
qλ

κ2
θ

(
|Bθ | + qλ

)
− 2qλ

κθ
+ 1. (51)

Therefore, results in [41] and [45] can be seen as particular cases
of Theorem 3.

To quantify how the knowledge of samples intensity and avail-
ability can improve the signal reconstruction, we determine the
signal reconstruction MSE for various interpolator parameter
κθ in (45) designed according to such knowledge. The optimal
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value of κθ minimizing the signal reconstruction MSE is ob-
tained by setting to zero the derivative of (32) with respect to
κθ , which results in

κθ =
(
α̂ |Bθ | + β̂θ qλ

)
/γ̂θ (52)

with α̂ = α, β̂θ = βθ , and γ̂θ = γθ . Thus, (52) depends on pa-
rameters α, βθ , γθ , whose expressions (37a), (46a), (46b) re-
quire the prior knowledge of the signal to be reconstructed for
inhomogeneous PSP. Therefore, three suboptimal cases are con-
sidered in addition to the optimal one. In particular, κθ is chosen
equal the interpolator parameter optimal for the case of homo-
geneous sampling and in the absence of sample position errors
(i.e., from Corollary 8 it is α̂ = β̂θ = γ̂θ = 1, independently of
the signal spectrum). The optimal κθ is considered as a theoret-
ical benchmark for ILP filtering.

Case 1 (Knowledge of Average Samples’ Density): The sam-
ple availability is unknown thus assume q = 1. The unknown
interpolator spatial bandwidth |Bθ | (related to that of the signal)
is considered negligible with respect to λ. Therefore, (52) with
α̂ = β̂θ = γ̂θ = 1 provides κθ = λ and (32) results in

εs = α
q

λ
|Bθ | + βθ q2 − γθ 2q + 1. (53)

Case 2 (Knowledge of Average Samples’ Density and of Sam-
ple Loss Probability): The unknown interpolator spatial band-
width |Bθ | is considered negligible with respect to qλ. Therefore,
(52) with α̂ = β̂θ = γ̂θ = 1 provides κθ = qλ and (32) results
in

εs = α
|Bθ |
qλ

+ βθ − 2γθ + 1. (54)

Case 3 (Knowledge of Average Samples’ Density, Loss Prob-
ability, and of Signal Spatial Frequency Band): In this case (52)
for α̂ = β̂θ = γ̂θ = 1 provides

κθ= |Bθ | + qλ (55)

and

εs =
qλ

(
α|Bθ | + βθ qλ

)

(
|Bθ | + qλ

)2 − 2qλ γθ

|Bθ | + qλ
+ 1. (56)

Note that Cases 1–3, for α = βθ = γθ = 1 (homogeneous PSP
without sample position errors), result in subcases presented in
[41].

Case 4 (Full Knowledge): Substituting (52) with α̂ = α,

β̂θ = βθ , and γ̂θ = γθ in (32) gives

εs =
α |Bθ | +

(
βθ − γ2

θ

)
qλ

α |Bθ | + βθ qλ
. (57)

Note that Case 4 reduces to Case 3 for homogeneous PSP with-
out sample position errors.

B. Optimal LSI Interpolator

The optimal interpolation filtering function Θ (ν) is known
only for some specific cases in one dimension [76]. Here, by
extending the Wiener filtering theory to the inhomogeneous
(thus non-stationary) multidimensional case, we find the optimal
LSI interpolator function.

Theorem 5 (Optimal LSI Interpolator for Inhomogeneous
PSP): The optimal linear space-invariant interpolator is

Θ (ν) =
[Φes (ν) (Λ ∗ Q ∗ Z) (ν)]†Z (ν)

|Φes (ν) |2 | (Λ ∗ Q ∗ Z) (ν) |2 + αqλEz

(58)

with parameter κθ in (81) and equivalent bandwidth in (82).
Proof: See Appendix I. �
Corollary 9 (Optimal LSI for Homogeneous PSP): For ho-

mogeneous PSP with intensity λ (x) = λ and sample availabil-
ity q (x) = q, the optimal LSI interpolator results in

Θ (ν) =
Φ†

es
(ν) Ez (ν)

qλ|Φes (ν)|2Ez (ν) + Ez

. (59)

Proof: It follows from (58) with α = 1, Q (ν) = qδ (ν), and
Λ (ν) = λδ (ν). �

Remark 9: By comparing the optimal LSI expressions (58)
and (59), it can be noticed that inhomogeneity would require
prior knowledge of the signal to be reconstructed, while for
homogeneous PSP the optimal LSI interpolator requires the
knowledge of the ESD only. This makes the LSI optimization
mainly useful for deriving theoretical bounds.

In the absence of sample position errors (Φes (ν) = 1), the
optimal LSI interpolator expression (59) reduces to Θ (ν) =
Ez (ν) /

[
qλEz (ν) + Ez

]
, which, if the ESD is replaced by a

power spectral density, corresponds to the multidimensional ex-
tension of the optimal linear time invariant filter for the re-
construction of finite-power signal through a stationary Poisson
sampling process as presented in one dimension in [77]–[79].

Theorem 6 (Signal Reconstruction MSE for Optimal LSI In-
terpolator): For the optimal LSI interpolator (58), the signal
reconstruction MSE results in

εs = 1 − 1
Ez

∫

Rd

|Φes (ν)|2 | (Λ ∗ Q ∗ Z) (ν) |2 |Z (ν) |2

|Φes (ν)|2 | (Λ ∗ Q ∗ Z) (ν) |2 + αqλEz

dν .

(60)
Proof: See Appendix J. �
Corollary 10 (Signal Reconstruction MSE with Optimal LSI

Interpolator for Homogeneous PSP): For homogeneous PSP
with intensity λ (x) = λ and sample availability q (x) = q, the
optimal LSI interpolator (59) provides the signal reconstruction
MSE

εs = 1 − 1
Ez

∫

Rd

|Φes (ν)|2E2
z (ν)

|Φes (ν)|2Ez (ν) + Ez

qλ

dν. (61)

Proof: It follows from (60) with α = 1, Q (ν) = qδ (ν), and
Λ (ν) = λδ (ν). �

In the absence of sample position errors (Φes (ν) = 1), (61)
reduces to εs =

∫
Rd

Ez (ν)
qλEz (ν)+Ez

dν, which corresponds to the
multidimensional extension of the signal reconstruction pre-
sented in one dimension in [77]–[79].

C. Asymptotic Analysis

To provide more insights on what affects the most the signal
reconstruction MSE, we study its asymptotic behaviour for a
sample intensity large with respect to (2B)d considering all the
aforementioned interpolation techniques.

Corollary 11 (Asymptotic Expression for Signal Reconstruc-
tion MSE): For ιλ → ∞, the asymptotic expression for signal
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TABLE II
RECONSTRUCTION MSE FOR 1/ιλ → 0: (A) INHOMOGENEOUS PSP; (B)
HOMOGENEOUS PSP; AND (C) HOMOGENEOUS PSP WITHOUT SAMPLE

POSITION ERRORS

Interpol. PSP floor (c0 ) 1st order term (c1 )

ILP (A) βθ q 2 − 2γθ q + 1 αqιBθ

Case 1 (B) βθ q 2 − 2γθ q + 1 qιBθ

(C) (1 − q)2 qιBθ

ILP (A) βθ − 2γθ + 1 αιBθ
/q

Case 2 (B) βθ − 2γθ + 1 ιBθ
/q

(C) 0 ιBθ
/q

ILP (A) βθ − 2γθ + 1 [α + 2(γθ − βθ )]ιBθ
/q

Case 3 (B) βθ − 2γθ + 1 [1 + 2(γθ − βθ )]ιBθ
/q

(C) 0 ιBθ
/q

ILP (A)
(
1 − γ 2

θ /βθ

)
αγ 2

θ ιBθ
/(qβ 2

θ )
Case 4 (B)

(
1 − γ 2

θ /βθ

)
γ 2

θ ιBθ
/(qβ 2

θ )
(C) 0 ιBθ

/q

Opt. LSI (A) 0 α
q

∫
B̆

|Φ̆ ( σ̆ e s ν̆) |−2 |Z̆ ( ν̆) |2
|( Λ̆ ∗Q̆ ∗Z̆ ) ( ν̆) |2 dν̆

(B̆ ⊂ Rd ) (B) 0 1
q

∫
B̆ |Φ̆(σ̆e s ν̆)|−2 dν̆

(C) 0 ιB/q

reconstruction MSE is

εs = c0 + c1
1
ιλ

+ o
( 1

ιλ

)
(62)

where the floor c0 and the first order coefficient c1 are specified
in Table II for ILP interpolator and for optimal LSI interpolator
with ιB � |B|/(2B)d .19

Proof: For ILP interpolator, results follow from (53)–(57)
by using normalized quantities. For optimal LSI interpolator,
the normalized version of (60) results in

εs = 1 −
∫

B̆

|Z̆ (ν̆) |2

1 + α
qιλ

|Φ̆(σ̆es ν̆)|−2 |
(
Λ̆ ∗ Q̆ ∗ Z̆

)
(ν̆) |−2

dν̆

that, for ιλ → ∞, leads to the expressions in row 5 of Table II.
�

Remark 10: For homogeneous PSP without sample position
errors, the ILP interpolator (typical choice for wireless sensor
network applications) in cases 3 and 4 with ιBθ

= ιB is asymp-
totically optimum.

V. CASE STUDY

We now describe a case study for multidimensional ran-
dom sampling under different conditions and, when present,
with Gaussian distributed sample position errors. The consid-
ered sampled signal is that of the example in (2). Since the
sampling intensity λ (x) and the sample availability q (x) are
interchangeable in the presented Theorems,20 without loss of
generality consider the case q (x) = q.

Proposition 1 (ILP Interpolator): Under the hypothesis of
Corollary 7 for zero-mean Gaussian IID sample position er-
rors with normalized variance σ̆2

es
, when the sampled signal has

19For ILP interpolator cases 3 and 4, in which the signal band is known,
ιBθ

= ιB can be considered. For optimal LSI interpolator, the signal z (x),
availability q (x), and intensity λ (x) are here considered strictly band-limited
(i.e., B̆ ⊂ Rd ).

20This is expected since the effect of q (x) is to mark Π.

an ESD as in (3), the PSP intensity is λ (x) as in (5), and the
sample availability is q (x) = q, the reconstructed signal ESD
results in

Ĕẑ (ν̆) =
q2 ι2λ
κ̆2

θ

e−4π 2 σ̆ 2
e s ‖ν̆‖2

d−1∏

i=0

1
2bi

{

rect
(

ν̆i

2bi

)

+
a2

i

4

[

rect
(

ν̆i

2|bi + bλi
|

)

− rect
(

ν̆i

2|bi − bλi
|

)]}

+
q ιλ
κ̆2

θ

1B̆θ
(ν̆)

and the signal reconstruction MSE is found to be (36) with

α = 1 (63a)

βθ =
d−1∏

i=0

1
4
√

πbi σ̆e s

{

erf (2πbi σ̆e s ) +
a2

i

4
erf (2π|bi + bλi

|σ̆e s )

− a2
i

4
erf (2π|bi − bλi

|σ̆e s )
}

(63b)

γθ =
d−1∏

i=0

1√
8π bi σ̆e s

erf
(√

2 πbi σ̆e s

)
. (63c)

where erf( · ) is the Gaussian error function.
Example: Consider the setting of Proposition 1 with ιBθ

=
25 and κθ according to (55) since α, βθ , and γθ are unknown
to the interpolator.21 The signal bandwidth-per-dimension is
B = 10−4 [m−1 ].

Fig. 4(a) shows the signal reconstruction MSE as a func-
tion of λ for bλ = 1/2 and different values of σ̆es and a.
The case of homogeneous PSP without sample position errors
(a = 0, σ̆es = 0) is also given as a benchmark. It can be ob-
served that, while in the case of homogeneous PSP without
sample position errors the signal reconstruction MSE is linearly
decreasing with the average sampling intensity λ (consistently
with [41]), both the inhomogeneity and the sample position er-
rors generate an error floor. However, while the effect of the
inhomogeneous amplitude parameter a is always appreciable,
that of the normalized position error standard deviation σ̆es is
evident only with homogeneity (a = 0) or small inhomogeneity
(a = 0.01). Note also that the effect on the signal reconstruction
MSE of an inhomogeneity of 1% is almost equivalent to that of
a position error of 5%.

Fig. 4(b) shows the signal reconstruction MSE as a func-
tion of σ̆es for an average PSP intensity λ = 10−2[m−2] and
different values of a and bλ. It can be observed that, in the ho-
mogeneous case (a = 0 or bλ = 0) the effects of sample position
errors become evident when σ̆es is greater than 5% of the signal
correlation distance (i.e., 1/2B). Also, in the inhomogeneous
case (a > 0 and bλ > 0) the effects of sample position errors
become relevant for lower σ̆es and the behaviour of the signal
reconstruction MSE shows a local minimum that is more evi-
dent for higher values of a. This can be attributed to the fact that,
when samples are inhomogeneously distributed with low inten-
sity, sample position uncertainties regularize the sample spatial

21The ιBθ
= 25 corresponds, e.g., to an oversampling factor of 5 for each

dimension in R2 , thus B̆s ⊆ B̆θ for bλ ≤ 2.
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Fig. 4. Signal reconstruction MSE as a function of average PSP intensity λ and normalized position error σ̆e s with the following parameters: d = 2, B =
10−4 [m−1 ], ιBθ

= 25, pn = p = 10−3 , ∀n.

distribution. For high σ̆es , however, all the curves approach to
an asymptotic value.

Proposition 2 (Optimal LSI Interpolator): In the setting of
Proposition 1, the optimal LSI interpolator leads to

εs = 1 −
∫ b0

−b0

∫ b1

−b1

· · ·
∫ bd −1

−bd −1

dν̂0dν̂1 . . . dν̂d−1

ζ(ν̂0 , ν̂1 , . . . , ν̂d−1)
(64)

where

ζ (ν̂0 , ν̂1 , . . . , ν̂d−1) � 1
qιλ

d−1∏

i=0

2bi e4π 2 σ̆ 2
e s ν̆ 2

i

1 + a2
i

4 ψ b λi
2 b i

(
ν̆ i

2bi

) +
d−1∏

i=0

2bi

and ψb (x) � [rect (x − b) − rect (x + b)]2 .
Remark 11: For homogeneous PSP (ai = 0 or bλi

= 0) in
the absence of sample position errors (σ̆es = 0), (64) becomes

εs =
∏d−1

i=0 (2bi)

qιλ +
∏d−1

i=0 (2bi)
(65)

that, for one dimension (d = 1 thus b0 = 1/2) is consistent with
the result in [77] for a sinc-type signal reconstructed by an
optimal linear time-invariant (LTI) interpolator in the case of
stationary PSP.

Proposition 3 (Optimal LSI Interpolator—Homogeneous
PSP—Asymptotic Analysis): In the setting of Proposition 2 with
homogeneous PSP, the signal reconstruction MSE results in

εs =
1

qιλ

d−1∏

i=0

1
2
√

π σ̆es

erfi (2πbiσ̆es ) + o
( 1

ιλ

)
(66)

where erfi (z) � −j erf (jz).
Example: Consider the signal as in (2) sampled by an homo-

geneous PSP. Fig. 5(a) and (b) show the signal reconstruction
MSE as a function of the normalized PSP intensity ιλ for the
homogeneous case in R2 with the different interpolators dis-
cussed in Section IV. When the signal band is unknown, an
oversampling factor ιBθ

= 25 is considered. In the absence of
sample position errors, Fig. 5(a), the only knowledge of the
average sample density (Case 1) shows an error floor. If also

the band of the signal to be reconstructed is known to the in-
terpolator (Case 3), the signal reconstruction MSE is reduced
due to the lower amount of sampling noise22 collected by an
ILP interpolator with oversampling factor ιBθ

= 1. Case 4 co-
incides with Case 3 in the absence of sample position errors,
as expected. The signal reconstruction MSE with optimal LSI
interpolator case coincides in this example to that with opti-
mized ILP interpolator, as it can be noticed by comparing (56)
for α = βθ = γθ = 1(homogeneous case without position er-
rors) and ιBθ

= ιB = 1(knowledge of signal band) to (65) for
b0 = b1 = 1/2. In the presence of sample position errors, an
error floor is introduced for all the ILP cases. Note that the
advantage of the knowledge of sample loss (Case 2) becomes
irrelevant, while that of the signal band (Case 3) is relevant only
for relatively small sample density. The optimized ILP interpo-
lator with the knowledge of the position error statistic performs
closely to the optimal LSI interpolator for ιλ < 106 , while for
higher values an error floor arises (even if lower than the other
ILP cases).

Proposition 4 (Optimal LSI Interpolator—Inhomogeneous
PSP—Asymptotic Analysis): In the setting of Proposition 2, the
signal reconstruction MSE results in

εs =
1

q ιλ

d−1∏

i=0

∫ bi

−bi

e4π 2 σ̆ 2
e s ν̆ 2

i dν̆i

1 + a2
i

4 ψ b λi
2 b i

(
ν̆ i

2bi

) + o
( 1

ιλ

)
. (67)

Example: Consider the signal as in (2) sampled by an inho-
mogeneous PSP with intensity given by (5). The oversampling
factor is ιBθ

= 25 for ILP interpolator cases 1 and 2, while
for ILP cases 3 and 4, the interpolator band is assumed to be
the minimal such that B̆s ⊆ B̆θ (i.e., ιBθ

= 1.21 for bλ = 0.05).
Fig. 5(c) and (d) show the impact of inhomogeneity on εs . Both
in the absence and in the presence of sample position errors, it
can be observed that the error floors for the ILP interpolators
are higher than in the homogeneous case and that performance
close to the case of optimal LSI can be reached for low ιλ. In

22We recall that the homogeneous PSP introduces a sampling noise in the
sampled signal spectrum, as shown in Fig. 1(b).
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Fig. 5. Signal reconstruction MSE in R2 (corresponding to the case of Fig. 1) for pn = p = 10−3 , ∀n.

such case, the knowledge of the signal band and that of the inho-
mogeneous PSP intensity function (case 3) are significant. In the
presence of sample position errors, their statistical knowledge
(case 4) provides a negligible advantage.

VI. FINAL REMARK

This paper provides a general analysis for sampling and re-
construction of a finite-energy signal in Rd based on a finite set
of samples randomly gathered in a presence of sample position
uncertainties. The reconstructed signal ESD and reconstruction
MSE are derived accounting for: (i) signal properties such as
signal spectrum and spatial correlation; (ii) sampling proper-
ties such as inhomogeneous sample spatial distribution, sample
availability, and non-ideal knowledge of sample positions; and
(iii) interpolation filtering. The main results are listed below.

1) The reconstructed signal ESD derived in Theorem 1 shows
how the ESD is enlarged by inhomogeneous PSP and dis-
torted in-band by imperfect knowledge of samples po-
sitions. The former effect requires an interpolator with
bandwidth per dimension greater than Nyquist frequency,
whereas the latter can be mitigated through equalization.

2) A general expression for the signal reconstruction MSE
is derived in Theorem 3 extending the one for the case of
homogeneous PSP with perfect knowledge of the samples

positions to the case of inhomogeneous PSP with im-
perfect knowledge of samples positions. Such expression
generalizes a known result by mean of three parameters
(α, βθ , γθ ) that are obtained as a function of signal and
sampling properties. In addition, the parameters are de-
termined for cases of practical interest.

3) The reconstruction MSE parameters are obtained in The-
orem 4. Parameter α depends on the sampling intensity
function, the sample availability function, and the signal
to be reconstructed. Parameters βθ and γθ depend on the
Φ-mean of modified versions of the signal ESD (Φ is
related to the characteristic function of sample position
errors), the normalized standard deviation of sample posi-
tion errors σ̆es , and the spectra of sampling intensity and
sample availability.

4) It was know that one-dimensional homogeneous PSP in-
troduces a white sampling noise, and that the condi-
tion for the signal-to-sampling noise ratio (evaluated in
the signal bandwidth) greater than 1 is average inten-
sity of available sampling greater than or equal to the
Nyquist rate, i.e., qλ ≥ 2B. We have demonstrated that
for d-dimensional inhomogeneous PSP with sample po-
sition errors and generic LSI interpolator, the condition
for the signal-to-sampling noise ratio at the interpolator’s
output greater than 1 is qλ ≥ α |Bθ |/βθ , where |Bθ | is
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the Lebesgue measure of the interpolator d-dimensional
band.

5) The optimal LSI interpolator minimizing the signal re-
construction MSE is derived in Theorem 5 and the corre-
sponding signal reconstruction MSE is given in Theorem
6. Such interpolator can compensate both sample inhomo-
geneity and position errors. In the inhomogeneous case,
the optimal LSI is not practically realizable as it would
require the prior knowledge of the signal to be recon-
structed. Moreover, it is shown that the widely adopted
ILP interpolator can be considered asymptotically opti-
mal in the case of homogeneous sampling without sample
position errors only, as in non-ideal condition (inhomo-
geneous PSP and/or sample position errors) it generates a
reconstruction MSE error floor.

6) It is demonstrated to which extent sample position errors
affect the signal reconstruction MSE based on the ratio
between the error standard deviation and the spatial cor-
relation of the signal per dimension. When the sample
position errors are Gaussian distributed, βθ and γθ reduce
to the Weierstrass transform (with parameter inversely
proportional to the square of σ̆es ) of a modified version
of the signal ESD. Moreover, when the spatial sample
distribution and the sample availability are homogeneous
and no sample position errors are present, the expression
of the signal reconstruction MSE and that of optimal LSI
interpolator reduce to known results as subcases.

APPENDIX A
PROOF OF LEMMA 1

Proof: In the sense of distributions, from the prop-
erties of Dirac delta generalized function, yL(x) =
y(x)

∑
n∈NΠ

anδ(x − xn ) =
∑

n∈NΠ
any(xn )δ(x − xn ).

By applying the FT, YL(ν) � F{yL(x)}(ν) =
∑

n∈NΠ

any(xn )e−j2πν·xn , thus

EyL (ν) = E
{
|YL(ν) |2

}
= E

{∣
∣
∣

∑

n∈NΠ

an y (xn ) e−j2π ν ·xn

∣
∣
∣
2}

that results in (14). By substituting (6) and μL (x) = E {L (x)}
in (13), and exploiting the linearity of integral operator, it is

ΥL [y] = E
{∫

Rd

|y (x) |2
∑

n∈NΠ

anδ (x − xn ) dx
}

which, from the properties of Dirac delta generalized function
and the independence of an ’s from Π, results in (15). �

APPENDIX B
PROOF OF LEMMA 2

Proof: By generalizing the result of [80] for an inhomoge-
neous PSP S in Rd with intensity λ (x), it is

μS (x) = λ (x) (68a)

RS (x, τ ) = λ (x) λ (x − τ ) + λ (x − τ ) δ (τ ) . (68b)

The (18a) is obtained by Fourier transforming (68a). Since S is
non-stationary, the ESD of yS (x) cannot be directly evaluated
as a convolution between the ESD of y (x) and the PSD of

S, but has to be computed by Fourier-transforming CyS (τ ) �∫
Rd RyS (x, τ ) dx where

RyS (x, τ ) = y (x) y† (x − τ ) RS (x, τ ) . (69)

By substituting (68b) in (69) we obtain

CyS (τ ) =
∫

Rd

λ (x) y (x) λ (x − τ ) y† (x − τ ) dx

+ δ (τ )
∫

Rd

y (x) y† (x − τ ) λ (x − τ ) dx

=
(
yλ ∗ y†

λ−

)
(τ ) + δ (τ )

(
y ∗ y†

λ−

)
(τ ) (70)

where yλ (x) � λ (x) y (x) and yλ− (x) � yλ (−x). By Fourier
transforming (70) and using the fact that F{δ(τ ) (y ∗
y†

λ−)(τ )}(0) = (y ∗ y†
λ−)(0) =

∫
Rd λ(x)|y(x)|2dx, we obtain

EzS (ν) = | (Λ ∗ Y ) (ν) |2 +
∫

Rd

λ (x) |y (x) |2dx .

This results in (18b) using (68a) and (17). From (15) with an =
1∀n ∈ NΠ (L ≡ S and qn = 1∀n) we obtain (19). �

APPENDIX C
PROOF OF LEMMA 3

Proof: From (14) with y (x) = z (x), the independence of
an ’s from Π, and E

{
a2

n

}
= qn , we have

EzL (ν) = E
{ ∑

n∈NΠ

∑

k ∈NΠ
k �= n

qn qk z (xn ) z† (xk ) e−j2π ν ·(xn −xk )
}

+ E
{ ∑

n∈NΠ

qn |z (xn ) |2
}

= E
{ ∑

n∈NΠ

∑

k∈NΠ

zq (xn ) z†
q (xk ) e−j2π ν ·(xn −xk )

}

− E
{ ∑

n∈NΠ

|zq (xn ) |2
}

+ E
{ ∑

n∈NΠ

qn |z (xn ) |2
}

.

This results in (20) by using Lemma 1 with y (x) = zq (x) and
L ≡ S (an = 1∀n ∈ NΠ ) for the first two terms, and by using
(15) with y (x) = z (x) for the third term. �

APPENDIX D
PROOF OF LEMMA 4

Proof: Note that, by using the definition of FT and the prop-
erties of Dirac delta generalized function, it is

F
{

z (x)
∑

n∈NΠ

anδ (x − xn )
}

(ν)

=
∑

n∈NΠ

anz (xn ) e−j2πν·xn . (71)

This, together with (8b) and the independence of esn ’s, an ’s,
and Π, gives

Uzu (ν) = Φes (ν)E
{ ∑

n∈NΠ

anz (xn ) e−j2πν·xn

}

= Φes (ν) F {z (x)μL (x)} (ν) (72)
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that, through the convolution properties, gives (21a). From the
aforementioned independence property and Lemma 1, it is

Ezu (ν) = E
{ ∑

n∈NΠ

a2
n |z (xn ) |2

}
+ E

{ ∑

n∈NΠ

∑

k ∈NΠ
k �= n

anak

× z (xn ) z† (xk ) e−j2πν·(xn −xk ) Φes (ν) Φ†
es

(ν)
}

= E
{ ∑

n∈NΠ

qn |z (xn ) |2
}
− |Φes (ν)|2

{ ∑

n∈NΠ

qn |z (xn ) |2
}

+ |Φes (ν)|2E
{ ∑

n∈NΠ

∑

k∈NΠ

anak z (xn ) z† (xk ) e−j2πν·(xn −xk )
}

that results in (21b) by (14) and (15) with y (x) = z (x). �

APPENDIX E
PROOF OF THEOREM 1

Proof: From (20) and (21b) we have

Ezu (ν) = |Φes (ν)|2Ezq s (ν) − |Φes (ν)|2ΥS [zq ] + ΥL [z] .

From (18b) with y (x) = zq (x) it follows

Ezu (ν) = |Φes (ν)|2 | (Λ ∗ Q ∗ Z) (ν) |2 + ΥL [z] . (73)

From (15) with y (x) = z (x) and from (19) with y (x) =√
q (x)z (x), we obtain

ΥL [z] = ΥS [
√

qz] = E
{ ∑

n∈NΠ

qn |z (xn ) |2
}

. (74)

By using (17) with y (x) =
√

q (x)z (x) and inverse FT of
(18a), (74) leads to

ΥL [z] =
∫

Rd

λ (x) q (x) |z (x) |2dx. (75)

Then, (22) is obtained from (9), (23), (73), and (75). �

APPENDIX F
PROOF OF THEOREM 2

Proof: Using the properties of the convolution operator for
two generic functions F (ν) and G(ν), it can be seen that

[
F (u) ∗ G

(
u

2B

)]
(ν)

(2B)d
= [F (2Bu) ∗ G (u)]

( ν

2B

)
. (76)

From (25a), (25b), (76) with F (·) = Λ(·) and G(·) = Q̆(·), and
(76) with F (·) = Z(·) and G(·) = (Λ̆ ∗ Q̆)(·), it is

(Λ ∗ Q ∗ Z) (ν) = qλ

√
Ez

(2B)
d
2

(
Λ̆ ∗ Q̆ ∗ Z̆

) ( ν

2B

)
. (77)

From (11a), (28), (26b), (27a), (27b), and (77), the (22) results
in (29). �

APPENDIX G
PROOF OF THEOREM 3

Proof: By using (9), (21a) and (21b) in (31), and by applying
the Parseval relation, we obtain

εs =

∫
Rd |z (x) |2dx

Ez
+

∫
Rd E

{
| (zu ∗ θ) (x) |2

}
dx

Ez

−
2R

{∫
Rd E {(zu ∗ θ) (x)} z† (x) dx

}

Ez

= 1 +
1

Ez

∫

Rd

|Θ (ν) |2Ezu (ν) dν

− 2
Ez

∫

Rd

R
{
Θ (ν) Uzu (ν) Z† (ν)

}
dν . (78)

By applying (7), (18a), (21a), and (73) to (78), the signal recon-
struction MSE can be written as

εs= 1 +
ΥL [z]

Ez

∫

Rd

|Θ (ν) |2dν

+
1

Ez

∫

Rd

|Θ (ν) |2 |Φes (ν)|2 | (Λ ∗ Q ∗ Z) (ν) |2dν

− 2
Ez

∫

Rd

R
{
Θ (ν)Φes (ν) (Λ ∗ Q ∗ Z) (ν) Z† (ν)

}
dν .

that results in (32) from (10) and (75). �

APPENDIX H
PROOF OF THEOREM 4

Proof: First apply the Parseval relation to (23), then (37a) is
obtained from (35) after using (76) with F (·) = Λ(·), G(·) =
Q̆(·) and with F (·) = Z†(·), G(·) = Z̆−(·). Equations (37b) and
(37c) are obtained from (35) after substituting (26b), (27a),
and (77) in (33a) and (33b), respectively. From (11a), (11b),
and (27b), the (32) results in (36). �

APPENDIX I
PROOF OF THEOREM 5

Proof: Consider the isometry between every generic finite-
energy random process f (x) and the corresponding vector
f . By establishing a metric defined by the scalar product as

〈f, g〉 � E
{∫

Rd f (x) g† (x) dx
}

, it can be shown that the LSI
minimizing the signal reconstruction MSE results in

Θ (ν) =
Z (ν) U†

zu (ν)
Ezu (ν)

. (79)

By (7), (18a), and (21a) it is

Uzu (ν) = Φes (ν) (Λ ∗ Q ∗ Z) (ν) . (80)

By substituting (73), (75), (23), and (80) in (79), we obtain (58).
It follows that

κθ=
|
∫
Rd q (x) λ (x) z (x) dx|2 +

∫
Rd q (x) λ (x) |z (x) |2dx

∫
Rd q (x) λ (x) z† (x) dx

∫
Rd z (x) dx

(81)
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and

|Bθ |= κ2
θ

∫

Rd

|Φes (ν) |2 | (Λ ∗ Q ∗ Z) (ν) |2 |Z (ν) |2
[
|Φes (ν)|2 | (Λ ∗ Q ∗ Z) (ν) |2 + αqλEz

]2 dν .

(82)
�

APPENDIX J
PROOF OF THEOREM 6

Proof: By substituting (58) in (33a) and (33b), it is

βθ

κ2
θ

=
1

q2λ
2
Ez

∫

Rd

|Φe s (ν)|4 | (Λ ∗ Q ∗ Z) (ν) |4 |Z (ν) |2dν
[
|Φe s (ν)|2 | (Λ ∗ Q ∗ Z) (ν) |2 + αqλEz

]2

(83a)

γθ

κθ

=
1

qλEz

∫

Rd

|Φe s (ν)|2 | (Λ ∗ Q ∗ Z) (ν) |2 |Z (ν) |2

|Φe s (ν)|2 | (Λ ∗ Q ∗ Z) (ν) |2 + αqλEz

dν .

(83b)

From (82) and (83a), it is α |Bθ |
κ2

θ
+ qλ βθ

κ2
θ

= γθ

κθ
that substituted

in (32) gives εs = 1 − qλ γθ

κθ
leading to (60) from (83b). �
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