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Abstract—Diversity techniques play a key role in modern wire-
less systems, whose design benefits from a clear understanding
of how these techniques affect system performance. To this aim
we propose a simple class of bounds, whose parameters are
optimized, on the symbol error probability (SEP) for detection of
arbitrary two-dimensional signaling constellations with diversity
in the presence of non-ideal channel estimation. Unlike known
bounds, the optimized simple bounds are tight for all signal-
to-noise ratios (SNRs) of interest. In addition, these bounds are
easily invertible, which enables us to obtain bounds on the symbol
error outage (SEO) and SNR penalty. As example applications
for digital mobile radio, we consider the SEO in log-normal
shadowing and the SNR penalty for both maximal ratio diversity,
in the case of unequal branch power profile, and subset diversity,
in the case of equal branch power profile, with non-ideal channel
estimation. The reported lower and upper bounds are extremely
tight, that is, within a fraction of a dB from each other.

Index Terms—Performance evaluation, optimized simple
bounds, multichannel reception, fading channels, non-ideal chan-
nel estimation, inverse symbol error probability.

I. INTRODUCTION

A CLEAR understanding of how diversity techniques
affect system performance is important for the design of

modern wireless systems. Recently, such techniques have been
proposed to improve the performance of third generation (3G)
and beyond 3G wireless networks (see, e.g., [1]–[4]). These
networks typically operate in situations where the received
signals are sufficiently spaced or delayed such that in the
presence of both small- and large-scale fading the received
branch signal-to-noise ratios (SNRs) are independent non-
identically distributed (INID) random variables (r.v.’s). Spe-
cific cases include: 1) angle diversity using multiple beams,
where the average received signal strength can be different
for each beam; 2) polarization diversity using horizontal and
vertical polarization with high base station antennas, where,
for a vertically-polarized antenna, the average received sig-
nal strength is typically 6 to 10 dB lower than that for a
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horizontally-polarized antenna; 3) macrodiversity, where each
channel is subject to different path-loss and shadowing; and 4)
Rake receivers operating in environments with unequal power
dispersion profile.

The performance of diversity systems in terms of symbol
and bit error probability (BEP) averaged over small-scale
fading has been studied extensively in the literature, with direct
applications to antenna diversity and Rake reception [5]–[13].
In particular, closed-form expressions for the average BEP of
binary phase shift keying (PSK) with coherent detection and
maximal-ratio combining (MRC), are given in [13], and the
symbol error probability (SEP) of 𝑀 -ary PSK is discussed
in [12]–[14]. Although it is possible in some cases to write a
closed-form expression, the alternative expression for the SEP
obtained by either the characteristic function [15]–[18], or the
equivalent moment generating function (MGF) method [12]
displays the dependence on the SNR and diversity technique.
More recently, diversity techniques in the presence of non-
ideal channel estimation have received increased attention
[19]–[32]. In fact, practical systems must first estimate the
channel on each diversity branch, then combine the signals
on the branches using weights that depend on these estimates
and the combining technique. Consequently, due to imperfect
estimation, systems incur a performance loss which depends
on the trade-off between the amount of energy dedicated to
data transmission and channel estimation (see, e.g., [27]–[29]).

When receiver complexity constrains the use of all the
available branches in space or time, subset diversity (SSD)
can be utilized [33]–[35]. SSD is a method by which a subset
of the available signals from the branches are selected and
then combined. Such systems, although they only make use
of a subset of the available branches, are capable of achieving
significant performance improvement over a single branch
receiver [36]–[44]. As an example, in hybrid-selection/MRC
(H-S/MRC), the 𝐿 out of 𝑁 branches with the strongest
signals are selected and then combined. In the case of SSD,
channel estimation plays a dual role. Specifically, the chosen
subset of diversity branches is based on knowledge of the
channel, i.e., the estimated channel gains. These estimates
are then used to weight the branches during the combining
process. Thus, channel estimation affects both the selection
process, as well as the combining mechanism [28].

In many important problems related to wireless mobile
communication, explicit expressions for the inverse SEP, that
is, SNR as a function of the target SEP, are also required [45],
[46]. One example is the outage probability defined as the
probability that the SEP exceeds a maximum tolerable level.
We shall refer to this quality of service (QoS) measure as
symbol error outage (SEO). This definition of SEO is appro-
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priate for digital communication systems and its evaluation
requires such an inverse SEP expression [45]–[48]. Inverse
SEP expressions are also useful when evaluating the SNR
penalty between different systems at a given target SEP [38],
[49], [50]. However, it is not straightforward to obtain the
inverse SEP. Although closed-form SEP expressions can be
found in some special cases, the inverse SEP function does
not exist in general, especially in the presence of channel
estimation errors. Therefore, inversion of the SEP typically
requires numerical root evaluation. To make problems of this
nature analytically tractable, we propose to replace the exact
SEP with bounds that are easily invertible and tight for all
values of SNR.

An important analysis that allows a quick assessment of the
SEP behavior is the asymptotic bound (see, e.g., [13], [51]).
However, numerical investigations reveal that for the SEPs of
interest (i.e., in the range 10−3 to 10−1 for uncoded systems)
at low and moderate SNR, the asymptotic bounds are quite
loose, especially as the number of diversity branches increases.
To address this problem, uniformly tight and invertible bounds
were reported in [45] for independent identically distributed
(IID) Rayleigh fading channels. A general analysis of the
behavior of the BEP in Gaussian noise for multidimensional
signaling constellations and various fading statistics is given
in [52].

In this paper we derive new easily invertible upper and
lower bounds on the SEP with parameters optimized within
a given class. These bounds, referred to as optimized simple
bounds (OSBs), are applicable to systems employing arbitrary
two-dimensional signaling constellations and diversity tech-
niques. We consider the widely-used Rayleigh fading channel
model superimposed on log-normal shadowing. We examine
non-ideal channel estimation in conjunction with: 1) maximal
ratio diversity in the case of unequal branch power profile
(INID diversity branches); and 2) subset diversity in the case
of equal branch power profile (IID diversity branches). Thus,
the performance of practical digital wireless communication
systems can be easily characterized, in terms of the SEP, SEO,
and SNR penalty, using rigorous lower and upper bounds.

The remainder of this paper is organized as follows. In
Section II we state the general problem and describe the new
class of bounds. We then provide some insights on known
bounds in the literature and derive optimal bounds within this
class. In Section III we apply our optimized simple bounds
to problems including the evaluation of SEP, SEO, and SNR
penalty. In Section IV we provide numerical results, and we
give our conclusions in Section V.

II. A NEW CLASS OF BOUNDS

In this section we first discuss the problem and then describe
the new class of bounds. Then we derive the optimal bounds
within this class.

A. Preliminaries

In several important scenarios, the SEP is given by a convex
combination of terms of the form

𝐼𝑁 (𝜻, 𝜙, 𝜓) ≜ 1

2𝜋

∫ 𝜙

0

𝑁∏
𝑛=1

sin2(𝜃 + 𝜓)

sin2(𝜃 + 𝜓) + 𝜁𝑛
𝑑𝜃 , (1)

where the vector 𝜻 = [𝜁1, 𝜁2, . . . , 𝜁𝑁 ], and 𝜁𝑛 is a function of
the 𝑛th branch SNR.1 Thus, finding upper and lower bounds
on the SEP essentially reduces to finding upper and lower
bounds on 𝐼𝑁 (𝜻, 𝜙, 𝜓) .

By noting that 0 ≤ sin2(𝜃 + 𝜓) ≤ 1 , one can immediately
obtain upper and lower bounds on 𝐼𝑁 (𝜻, 𝜙, 𝜓). In fact, by
substituting sin2(𝜃 + 𝜓) with its minimum value (i.e., 0) in
the denominator of the integrand in (1), we immediately obtain
an upper-bound:

𝐼𝑁 (𝜻, 𝜙, 𝜓) ≤ 𝑆𝑁 (𝜙, 𝜓)∏𝑁
𝑛=1 𝜁𝑛

, (2)

where

𝑆𝑁 (𝜙, 𝜓) ≜ 1

2𝜋

∫ 𝜙

0

sin2𝑁 (𝜃 + 𝜓) 𝑑𝜃 . (3)

Similarly, we can also obtain a lower bound on 𝐼𝑁 (𝜻, 𝜙, 𝜓)
by replacing sin2(𝜃+ 𝜓) with its maximum value (i.e., 1), in
the denominator of the integrand in (1), and we obtain

𝑆𝑁(𝜙, 𝜓)∏𝑁
𝑛=1(1 + 𝜁𝑛)

≤ 𝐼𝑁 (𝜻, 𝜙, 𝜓) . (4)

Unfortunately, as will be shown in Sec. IV, for low and
moderate values of the 𝜁𝑛’s, the bounds in (2) and (4) depart
from the exact expression (1) as 𝑁 increases. In the following
subsection, we propose bounds to overcome this problem.

B. Optimized Simple Bounds: The Key Idea

The key observation is that for low values of 𝜁𝑛, the
contribution of sin2(𝜃+𝜓) in the denominator of the integrand
in (1) is not negligible. Since our goal is to obtain lower
and upper bounds that are tight for all values of the 𝜁𝑛’s,
we propose the following class of bounds for 𝐼𝑁 :

𝐼𝑁,L(𝜻, 𝜙, 𝜓) ≤ 𝐼𝑁 (𝜻, 𝜙, 𝜓) ≤ 𝐼𝑁,U(𝜻, 𝜙, 𝜓) , (5)

where 𝐼𝑁,L(𝜻, 𝜙, 𝜓) and 𝐼𝑁,U(𝜻, 𝜙, 𝜓) have the following
form:

𝐼𝑁,L(𝜻, 𝜙, 𝜓) =
𝑆𝑁 (𝜙, 𝜓)∏𝑁

𝑛=1 [𝐶𝑁,L(𝜙, 𝜓) + 𝜁𝑛]
, (6a)

𝐼𝑁,U(𝜻, 𝜙, 𝜓) =
𝑆𝑁 (𝜙, 𝜓)∏𝑁

𝑛=1 [𝐶𝑁,U(𝜙, 𝜓) + 𝜁𝑛]
, (6b)

with 0 ≤ 𝐶𝑁,U(𝜙, 𝜓) ≤ 𝐶𝑁,L(𝜙, 𝜓) ≤ 1 independent of 𝜻.
Note that (2) and (4) belong to this class with 𝐶𝑁,U(𝜙, 𝜓) = 0
and 𝐶𝑁,L(𝜙, 𝜓) = 1.

Our goal is to find the optimal 𝐶𝑁,L(𝜙, 𝜓) and 𝐶𝑁,U(𝜙, 𝜓)
such that (5) is valid for all values of 𝜻. With this in mind,
we first define the function 𝐶𝑁 (𝜻, 𝜙, 𝜓) implicitly as follows:

𝐼𝑁 (𝜻, 𝜙, 𝜓) =
1

2𝜋

∫ 𝜙

0

𝑁∏
𝑛=1

sin2(𝜃 + 𝜓)

sin2(𝜃 + 𝜓) + 𝜁𝑛
𝑑𝜃

≜ 𝑆𝑁 (𝜙, 𝜓)∏𝑁
𝑛=1 [𝐶𝑁 (𝜻, 𝜙, 𝜓) + 𝜁𝑛]

. (7)

1For several cases of interest, 𝜁𝑛 increases monotonically with the 𝑛th

branch SNR (see Table II). Unless otherwise stated, the terms SNR and SEP
are used to denote the mean SNR and the mean SEP, respectively, averaged
over the small-scale fading.
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Note that the function 𝐶𝑁 (𝜻, 𝜙, 𝜓) is well defined and unique
for each 𝜻, since the mapping

ℎ(𝑥) : ℝ+ → (0, ℎ0] ,

defined by

ℎ(𝑥) ≜ 𝑆𝑁 (𝜙, 𝜓)∏𝑁
𝑛=1 (𝑥+ 𝜁𝑛)

, 𝑥 ∈ ℝ
+ , (8)

with ℎ0 = ℎ(0), is a continuous and strictly decreasing
function of 𝑥.2 Also note that from (2) and (4), 𝐼𝑁 (𝜻, 𝜙, 𝜓) ∈
[ℎ(1), ℎ(0)]. Moreover, since 𝐼𝑁 (𝜻, 𝜙, 𝜓) is a continuous
function of each 𝜁𝑛, 𝐶𝑁 (𝜻, 𝜙, 𝜓) is also continuous in each 𝜁𝑛.
We will study the behavior of 𝐶𝑁 (𝜻, 𝜙, 𝜓) in the following.3

C. Behavior of 𝐶𝑁 (𝜻, 𝜙, 𝜓)

Theorem 1: [Monotonicity of 𝐶𝑁 (𝜻, 𝜙, 𝜓)] The function
𝐶𝑁 (𝜻, 𝜙, 𝜓) is monotonically increasing in 𝜁𝑛, for each 𝑛 .

Proof: Without loss of generality we will show that
𝐶𝑁 (𝜻, 𝜙, 𝜓) is monotonically increasing in 𝜁1. Let us consider
an increment of 𝜁1 and define a new 𝜻 = [𝜁1, 𝜁2, . . . , 𝜁𝑁 ]
where

𝜁𝑛 =

{
𝜁1 +Δ𝜁1 𝑛 = 1,

𝜁𝑛 otherwise .
(9)

Next, we verify that the variation in 𝐶𝑁 (𝜻, 𝜙, 𝜓), that is

Δ𝐶 = 𝐶𝑁

(
𝜻, 𝜙, 𝜓

)
− 𝐶𝑁 (𝜻, 𝜙, 𝜓) ,

as a function of Δ𝜁1 is non-negative for all values of 𝜻
and Δ𝜁1 > 0. Note that 𝐼𝑁 (𝜻, 𝜙, 𝜓) is continuous and strictly
decreasing in 𝜁𝑛 for each 𝑛, and since the vector 𝜻 differs
from the vector 𝜻 only in the first component, we have

𝐼𝑁 (𝜻, 𝜙, 𝜓) ≤ 𝐼𝑁 (𝜻, 𝜙, 𝜓) (10)

The above inequality, together with (7), implies that

[
𝐶𝑁 (𝜻, 𝜙, 𝜓) + (𝜁1 +Δ𝜁1)

] 𝑁∏
𝑛=2

[
𝐶𝑁 (𝜻, 𝜙, 𝜓) + 𝜁𝑛

]

≥
𝑁∏

𝑛=1

[𝐶𝑁 (𝜻, 𝜙, 𝜓) + 𝜁𝑛] ,

1 ≤
[
1 +

Δ𝐶 +Δ𝜁1
𝐶𝑁 (𝜻, 𝜙, 𝜓) + 𝜁1

] 𝑁∏
𝑛=2

[
1 +

Δ𝐶

𝐶𝑁 (𝜻, 𝜙, 𝜓) + 𝜁𝑛

]
.

Taking the logarithm of both sides, gives

ln

(
1 +

Δ𝐶 +Δ𝜁1
𝐶𝑁 (𝜻, 𝜙, 𝜓) + 𝜁1

)

+
𝑁∑

𝑛=2

ln

(
1 +

Δ𝐶

𝐶𝑁 (𝜻, 𝜙, 𝜓) + 𝜁𝑛

)
≥ 0 . (11)

Now, we take the limit of (11) for Δ𝜁1 → 0, with Δ𝐶 → ∂𝐶 ,
which results in

𝑁∑
𝑛=1

ln

(
1 +

∂𝐶

𝐶𝑁 (𝜻, 𝜙, 𝜓) + 𝜁𝑛

)
≥ 0 . (12)

2When explicit definitions of functions are not possible, implicit definitions
enable elegant solutions to mathematical problems. Without the use of an
implicit definition, the solution to the problem at hand would have been very
cumbersome.

3Problems akin to this were addressed in [53].

It is clear that ∂𝐶 ≥ 0 ; otherwise, ∂𝐶 < 0 would imply
that all the terms in the sum of (12) are negative, which is
a contradiction. Similar arguments can be used to prove that
the partial derivative of 𝐶𝑁 (𝜻, 𝜙, 𝜓) with respect to each 𝜁𝑛
is also nonnegative.

D. Derivation of the Optimized Simple Bounds

By using the property above we arrive at the OSBs for
𝐼𝑁 (𝜻, 𝜙, 𝜓) .

Theorem 2: [Optimized Simple Bounds for 𝐼𝑁 (𝜻, 𝜙, 𝜓)]
The function 𝐼𝑁 (𝜻, 𝜙, 𝜓) is lower and upper bounded by

𝐼𝑁,L(𝜻, 𝜙, 𝜓) ≤ 𝐼𝑁 (𝜻, 𝜙, 𝜓) ≤ 𝐼𝑁,U(𝜻, 𝜙, 𝜓) , (13)

where the optimal values for 𝐶𝑁,L(𝜙, 𝜓) and 𝐶𝑁,U(𝜙, 𝜓) are
given by

𝐶𝑁,L(𝜙, 𝜓) =
𝑆𝑁+1(𝜙, 𝜓)

𝑆𝑁 (𝜙, 𝜓)
, (14a)

𝐶𝑁,U(𝜙, 𝜓) =

[
2𝜋

𝜙
𝑆𝑁(𝜙, 𝜓)

]1/𝑁
. (14b)

Proof: The definition of 𝐶𝑁 (𝜻, 𝜙, 𝜓) in (7) implies that
any 𝐶𝑁,L(𝜙, 𝜓) and 𝐶𝑁,U(𝜙, 𝜓) satisfying

𝐶𝑁,L(𝜙, 𝜓) ≥ 𝐶𝑁 (𝜻, 𝜙, 𝜓) , (15)

𝐶𝑁,U(𝜙, 𝜓) ≤ 𝐶𝑁 (𝜻, 𝜙, 𝜓) , (16)

for all values of 𝜻, provide us with bounds of the form (13).
Since ℎ(𝑥) in (8) is strictly decreasing, the optimal 𝐶𝑁,L(𝜙, 𝜓)
that results in the tightest lower bound is obtained by choosing
the smallest possible value of 𝐶𝑁,L(𝜙, 𝜓) satisfying (15), i.e.,

𝐶𝑁,L(𝜙, 𝜓) ≜ sup
𝜻

𝐶𝑁 (𝜻, 𝜙, 𝜓) . (17)

Similarly, the optimal 𝐶𝑁,U(𝜙, 𝜓) that results in the tightest
upper bound is obtained by

𝐶𝑁,U(𝜙, 𝜓) ≜ inf
𝜻

𝐶𝑁 (𝜻, 𝜙, 𝜓) . (18)

Since 𝐶𝑁 (𝜻, 𝜙, 𝜓) is monotonically increasing by Theorem 1,
we have4

𝐶𝑁,L(𝜙, 𝜓) = lim
𝜻→+∞

𝐶𝑁 (𝜻, 𝜙, 𝜓) , (19)

𝐶𝑁,U(𝜙, 𝜓) = lim
𝜻→0

𝐶𝑁 (𝜻, 𝜙, 𝜓) . (20)

Without loss of generality, these two limits can be evaluated
by assuming 𝜁𝑛 = 𝜁 ∀𝑛 and then taking the limit. Starting
from (7) with 𝜁𝑛 = 𝜁 ∀𝑛, it is easy to see that

lim
𝜁→+∞

𝐶𝑁 (𝜻, 𝜙, 𝜓) =

∫ 𝜙

0
sin2𝑁+2(𝜃 + 𝜓) 𝑑𝜃∫ 𝜙

0 sin2𝑁 (𝜃 + 𝜓) 𝑑𝜃
, (21)

lim
𝜁→0

𝐶𝑁 (𝜻, 𝜙, 𝜓) =

[
1

𝜙

∫ 𝜙

0

sin2𝑁 (𝜃 + 𝜓) 𝑑𝜃

]1/𝑁
. (22)

The above two equations represent the optimum 𝐶𝑁,L(𝜙, 𝜓)
and 𝐶𝑁,U(𝜙, 𝜓), giving (14) as stated.

4The notations 𝜻 → +∞ and 𝜻 → 0 are used, respectively, to denote
𝜁𝑛 → +∞ and 𝜁𝑛 → 0 for all 𝑛.
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TABLE I
VALUES OF INTEREST FOR 𝑆𝑁 (𝜙, 𝜓), 𝐶𝑁,L(𝜙, 𝜓), AND 𝐶𝑁,U(𝜙, 𝜓).

(𝜙,𝑁) 𝑆𝑁 (𝜙, 0) 𝑆𝑁 (𝜙, 𝜋/4) 𝐶𝑁,L(𝜙, 0) 𝐶𝑁,U(𝜙, 0) 𝐶𝑁,L(𝜙, 𝜋/4) 𝐶𝑁,U(𝜙, 𝜋/4)

(Φ2, 1) 0.13 0.20 0.75 0.50 0.85 0.82
(Φ2, 2) 0.10 0.17 0.83 0.61 0.87 0.83
(Φ2, 4) 0.068 0.13 0.90 0.72 0.91 0.86
(Φ2, 8) 0.049 0.098 0.94 0.82 0.95 0.89
(Φ4, 1) 0.23 0.23 0.79 0.61 0.79 0.61
(Φ4, 2) 0.18 0.18 0.85 0.69 0.85 0.69
(Φ4, 4) 0.14 0.14 0.90 0.78 0.90 0.78
(Φ4, 8) 0.098 0.098 0.94 0.85 0.94 0.85
(Φ8, 1) 0.25 0.23 0.76 0.56 0.78 0.53
(Φ8, 2) 0.19 0.18 0.83 0.65 0.85 0.64
(Φ8, 4) 0.14 0.14 0.90 0.75 0.90 0.75
(Φ8, 8) 0.098 0.098 0.94 0.83 0.94 0.83

Note that, the optimal 𝐶𝑁,L(𝜙, 𝜓) and 𝐶𝑁,U(𝜙, 𝜓) do not
depend on the particular 𝜻. In Table I we report some values
of interest for 𝑆𝑁 (𝜙, 𝜓), 𝐶𝑁,L(𝜙, 𝜓), and 𝐶𝑁,U(𝜙, 𝜓) with
Φ𝑀 ≜ 𝜋(𝑀 − 1)/𝑀 . For binary PSK signals, 𝐶𝑁,L(𝜙, 𝜓)
and 𝐶𝑁,U(𝜙, 𝜓) reduce to

𝐶𝑁,L(Φ2, 0) =
2𝑁 + 1

2𝑁 + 2
, 𝐶𝑁,U(Φ2, 0) =

1

4

[(
2𝑁

𝑁

)]1/𝑁
.

Another characteristic of the proposed bounds is that they are
asymptotically tight for large 𝑁 ; in fact, both 𝐶𝑁,U(𝜙, 𝜓) and
𝐶𝑁,L(𝜙, 𝜓) tend to one, therefore the upper- and lower-bound
tend toward each other and hence to the exact solution.

Remark: An important result for this class of bounds is that
the optimal 𝐶𝑁,L(𝜙, 𝜓) and 𝐶𝑁,U(𝜙, 𝜓) for MRC of INID
branches and SSD with IID branches are the same as those
for MRC of IID branches.

III. APPLICATIONS OF THE OPTIMIZED SIMPLE BOUNDS

In this section we apply the optimized simple bounds,
developed in the previous section, to the evaluation of the
SEP, the SEO, and the SNR penalty.

A. Symbol Error Probability

We consider a diversity system with 𝑁 available diversity
branches5 employing an arbitrary two-dimensional 𝑀 -ary
signaling constellation with polygonal decision boundaries.
We will examine the case of Rayleigh distributed small-
scale fading where the instantaneous symbol SNR on the
𝑛th diversity branch is exponentially distributed with mean
Γ𝑛 = (𝑎𝑛/𝐴)Γ. Here the 𝑎𝑛’s are related to the power profile
of the diversity branches and 𝐴 is a normalization factor such
that Γ represents the average symbol SNR over all branches
(𝐴 = (1/𝑁)

∑𝑁
𝑛=1 𝑎𝑛).

In [28], the case of SSD with non-ideal channel estimation
was considered for systems using arbitrary two-dimensional
signaling constellations and operating in IID Rayleigh fading
channels. For such systems, it was shown that the SEP as a

5In the following we will use the terms path and branch interchangeably
since our analysis applies to spatial diversity (e.g., antenna subset diversity),
as well as temporal diversity (e.g., selective Rake reception).

function of the SNR, Γ, averaged over the constellation points
and the small-scale fading is given by

𝑃𝑒(Γ) =

𝑀∑
𝑖=1

𝑝𝑖
∑
𝑗∈ℬ𝑖

𝐼𝑁 (𝜻(𝑖,𝑗), 𝜙𝑖,𝑗 , 𝜓𝑖,𝑗) , (23)

where 𝑝𝑖 is the transmission probability for constellation point
𝑠𝑖, ℬ𝑖 is the set consisting of the indices for the constellation
points that share a decision boundary with 𝑠𝑖, and 𝜙𝑖,𝑗 and
𝜓𝑖,𝑗 are angles describing the decision region of the 𝑖th

constellation point. The 𝑛th element of the vector 𝜻(𝑖,𝑗) is
given by

𝜁(𝑖,𝑗)𝑛 =
𝑏𝑛
4

𝑤𝑖,𝑗𝑁p 𝜀Γ
1
Γ +𝑁p 𝜀+ 𝜉𝑖

, (24)

where the energy corresponding to constellation point 𝑠𝑖
normalized by the mean symbol energy 𝐸s is given by 𝜉𝑖 =
𝐸𝑖/𝐸s, 𝑁p represents the number of received pilot symbols
each with energy 𝜀𝐸s, 𝑤𝑖,𝑗 depends on the modulation format,
and the set {𝑏𝑛} is determined by the diversity combining
method.

The expression in (23) is valid for subset diversity with IID
branches and an arbitrary two-dimensional signaling constel-
lation. Following a derivation like that in [28], it can be shown
that the SEP of MRC of INID diversity branches is lower and
upper bounded when the following SNR mappings are used:

𝜁
(𝑖,𝑗)
𝑛,L =

𝑎𝑛
4𝐴

𝑤𝑖,𝑗𝑁p 𝜀Γ
𝐴

𝑎maxΓ
+𝑁p 𝜀+ 𝜉𝑖

(25)

𝜁
(𝑖,𝑗)
𝑛,U =

𝑎𝑛
4𝐴

𝑤𝑖,𝑗𝑁p 𝜀Γ
𝐴

𝑎minΓ
+𝑁p 𝜀+ 𝜉𝑖

, (26)

where 𝑎max = max𝑛 𝑎𝑛 and 𝑎min = min𝑛 𝑎𝑛. As will be
apparent from the numerical results presented in Sec. IV, we
have found that for SNRs and diversity orders of interest, an
SNR mapping which leads to a good approximation is given
by

𝜁(𝑖,𝑗)𝑛 =
𝑎𝑛
4𝐴

𝑤𝑖,𝑗𝑁p 𝜀Γ
1
Γ +𝑁p 𝜀+ 𝜉𝑖

. (27)

The cases of IID and INID diversity branches can be unified in
the form of (23) using appropriate SNR mapping summarized
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TABLE II
SNR MAPPINGS FOR SPECIAL CASES OF THE SEP.

Subset Diversity MRC of unequal branch power profile

𝜁𝑛 for 𝑀 -PSK 𝜁
(𝑖)
𝑛 for 𝑀 -QAM 𝜁𝑛 for 𝑀 -PSK 𝜁

(𝑖)
𝑛 for 𝑀 -QAM

Ideal
Channel

Estimation
𝑏𝑛𝑐MPSKΓ 𝑏𝑛𝑐MQAMΓ

𝑎𝑛

𝐴 𝑐MPSKΓ
𝑎𝑛

𝐴 𝑐MQAMΓ

Non-ideal
Channel

Estimation

𝑏𝑛 𝑁p 𝜀 𝑐MPSKΓ

( 1
Γ+𝑁p 𝜀+1)

𝑏𝑛 𝑁p 𝜀 𝑐MQAMΓ

( 1
Γ+𝑁p 𝜀+𝜉𝑖)

𝑎𝑛 𝑁p 𝜀 𝑐MPSKΓ

𝐴( 1
Γ+𝑁p 𝜀+1)

𝑎𝑛 𝑁p 𝜀 𝑐MQAMΓ

𝐴( 1
Γ+𝑁p 𝜀+𝜉𝑖)

in Table II.6

Specifically, for the case of 𝑀 -PSK, we have

𝑃𝑒(Γ) = 2𝐼𝑁(𝜻,Φ𝑀 , 0) , (28)

and for 𝑀 -QAM, we have

𝑃𝑒(Γ) =
1

𝑀

∑
𝑖

𝜔
(𝑎)
𝑖 𝐼𝑁

(
𝜻(𝑖),Φ2,

𝜋

4

)

+
1

𝑀

∑
𝑖

𝜔
(𝑏)
𝑖 𝐼𝑁

(
𝜻(𝑖),Φ4, 0

)
. (29)

Note that 𝑃𝑒 depends on Γ through 𝜻 as described in Table
II with 𝑐MPSK = sin2(𝜋/𝑀) and 𝑐MQAM = 3/(2(𝑀 − 1)).
For each case of interest, these expressions have a compact
form and clearly display the dependence of the SEP on the
SNR, constellation-size, branch power profile, and diversity
technique. The values for 𝜔

(𝑎)
𝑖 , 𝜔(𝑏)

𝑖 , and 𝜉𝑖 are given in [28,
Table I] and the summation in (29) is performed over the
nonzero terms.

In the case of SSD with IID branches (i.e., equal branch
power profile) we have 𝑎𝑛 = 1, ∀𝑛 and 𝑏𝑛 can be obtained
using the virtual-branch technique [36], [37]. In particular, for
H-S/MRC, where the 𝐿 strongest branches are combined, the
𝑏𝑛’s are given by

𝑏𝑛 =

{
1 𝑛 ≤ 𝐿
𝐿/𝑛 otherwise .

In the case of selection diversity (𝐿 = 1) 𝑏𝑛 = 1/𝑛, ∀𝑛,
while for the case of MRC 𝑏𝑛 = 1, ∀𝑛. For MRC of INID
branches, 𝑏𝑛 = 1, ∀𝑛 and the Γ𝑛’s are related to the branch
power profile through the 𝑎𝑛’s.

Note that in the case of 𝑀 -QAM with ideal channel
estimation (29) reduces to

𝑃𝑒 (Γ) =
𝜔(𝑎)

𝑀
𝐼𝑁

(
𝜻,Φ2,

𝜋

4

)
+

𝜔(𝑏)

𝑀
𝐼𝑁 (𝜻,Φ4, 0) , (30)

where 𝜔(𝑎) =
∑

𝑖 𝜔
(𝑎)
𝑖 and 𝜔(𝑏) =

∑
𝑖 𝜔

(𝑏)
𝑖 , given by

{𝜔(𝑎), 𝜔(𝑏)} = {0, 8}, {24, 24}, {168, 56}, and {840, 120} for
𝑀 = 4, 16, 64, and 256, respectively.

Since all terms in (23) are positive, we can directly obtain
lower and upper bounds for the SEP of any two-dimensional
constellation using Theorem 2 as

𝑃𝑒,L(Γ) ≤ 𝑃𝑒(Γ) ≤ 𝑃𝑒,U(Γ) , (31)

6Note that all the SNR mappings given in Table II, and the resulting
expressions involving such SNR mappings, are exact for all cases, except those
for MRC of unequal branch power profile with non-ideal channel estimation.

𝑃𝑒,L(Γ) =

𝑀∑
𝑖=1

𝑝𝑖
∑
𝑗∈ℬ𝑖

𝐼𝑁,L(𝜻
(𝑖,𝑗), 𝜙𝑖,𝑗 , 𝜓𝑖,𝑗) , (32a)

𝑃𝑒,U(Γ) =

𝑀∑
𝑖=1

𝑝𝑖
∑
𝑗∈ℬ𝑖

𝐼𝑁,U(𝜻
(𝑖,𝑗), 𝜙𝑖,𝑗 , 𝜓𝑖,𝑗) . (32b)

Equations (32a) and (32b) can be specialized for 𝑀 -PSK as

𝑃𝑒,L(Γ) = 2𝐼𝑁,L(𝜻,Φ𝑀 , 0) , (33a)

𝑃𝑒,U(Γ) = 2𝐼𝑁,U(𝜻,Φ𝑀 , 0) , (33b)

and for 𝑀 -QAM as

𝑃𝑒,L(Γ) =
1

𝑀

∑
𝑖

𝜔
(𝑎)
𝑖 𝐼𝑁,L

(
𝜻(𝑖),Φ2,

𝜋

4

)

+
1

𝑀

∑
𝑖

𝜔
(𝑏)
𝑖 𝐼𝑁,L

(
𝜻(𝑖),Φ4, 0

)
, (34a)

𝑃𝑒,U(Γ) =
1

𝑀

∑
𝑖

𝜔
(𝑎)
𝑖 𝐼𝑁,U

(
𝜻(𝑖),Φ2,

𝜋

4

)

+
1

𝑀

∑
𝑖

𝜔
(𝑏)
𝑖 𝐼𝑁,U

(
𝜻(𝑖),Φ4, 0

)
. (34b)

B. Symbol Error Outage

In digital mobile radio systems the SEP alone is not
sufficient to describe the link quality when a fast process (e.g.,
thermal noise and small-scale fading) is superimposed on the
slow process (e.g., combination of mobility, shadowing, and
power control). In such a situation the SEO is a reasonable
performance metric since it characterizes the effect of slow
variations of the channel on system performance [45]–[48].
For a target SEP equal to 𝑃 ★

𝑒 , the SEO is defined as:

𝑃𝑜 ≜ ℙ {𝑃𝑒 (Γ) > 𝑃 ★
𝑒 } . (35)

For mobile radio applications with equal branch power profile,
where different paths are affected by the same shadowing
level, or applications with unequal branch power profiles,
where there is completely correlated shadowing, the vector 𝜻
depends on only a single r.v., Γ, representing the so-called
local-mean SNR. Moreover, the function 𝑃𝑒(Γ) is strictly
decreasing in its argument and the SEO becomes

𝑃𝑜 =

∫ Γ★

0

𝑓Γ(𝑦) 𝑑𝑦 , (36)

where Γ★ is the required SNR to achieve the target SEP and
𝑓Γ(⋅) is the probability density function (PDF) of Γ. Hence,
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the crucial point in evaluating the SEO is inverting 𝑃𝑒, that
is, finding Γ★ = 𝑃−1

𝑒 (𝑃 ★
𝑒 ).

Using (23) and (35) the SEO is given by

𝑃𝑜(𝑃
★
𝑒 ) = ℙ

⎧⎨
⎩

𝑀∑
𝑖=1

𝑝𝑖
∑
𝑗∈ℬ𝑖

𝐼𝑁 (𝜻(𝑖,𝑗), 𝜙𝑖,𝑗 , 𝜓𝑖,𝑗) ≥ 𝑃 ★
𝑒

⎫⎬
⎭ .

(37)
The analysis of (37) requires an inverse SEP expression which
in general requires numerical root evaluation of a function,
consisting of a sum of integrals, whose complexity increases
with 𝑁 and 𝑀 . This difficulty can be alleviated by using our
optimized bounds that, as will be shown in Sec. IV, are tight
for all SNRs, diversity order 𝑁 , constellation size 𝑀 , and
branch power profiles {𝑎𝑛}, as well as diversity combining
methods {𝑏𝑛}. Moreover, the optimized bounds are easily
invertible since they can be written as ratios of polynomials
in Γ. The bounds on the SEP in (32) can be used to obtain
both upper and lower bounds for 𝑃𝑜 as given in the following.
In general, the SEO as a function of target SEP, 𝑃 ★

𝑒 , is lower
and upper bounded by

𝑃𝑜,L(𝑃
★
𝑒 ) ≤ 𝑃𝑜(𝑃

★
𝑒 ) ≤ 𝑃𝑜,U(𝑃

★
𝑒 ) , (38)

where,

𝑃𝑜,L(𝑃
★
𝑒 ) =

∫ 𝑃−1
𝑒,L (𝑃★

𝑒 )

0

𝑓Γ(𝑦) 𝑑𝑦 , (39a)

𝑃𝑜,U(𝑃
★
𝑒 ) =

∫ 𝑃−1
𝑒,U (𝑃★

𝑒 )

0

𝑓Γ(𝑦) 𝑑𝑦 . (39b)

In fact, since the SEP decreases monotonically with Γ and
𝑓Γ(𝑦) is non-negative, we obtain (38) and (39) by inverting
(32).

At this point some comments can be made regarding
the computation of the SNRs, Γ★

L = 𝑃−1
𝑒,L (𝑃

★
𝑒 ) and Γ★

U =

𝑃−1
𝑒,U(𝑃

★
𝑒 ), required for the derivation of the lower and upper

bounds. In particular, since the terms 𝐼𝑁,L(⋅) and 𝐼𝑁,U(⋅) of
𝑃𝑒,L(⋅) and 𝑃𝑒,U(⋅) in (32) are ratios of polynomials, the
equations 𝑃𝑒,L = 𝑃 ★

𝑒 and 𝑃𝑒,U = 𝑃 ★
𝑒 are also polynomials.

The exact degree of these polynomials will depend on the
signaling constellation, diversity order, and channel estimation
method.7

1) SEO for Log-Normal Distributed Shadowing: It has
been shown that shadowing in mobile radio systems is well
modeled by the log-normal distribution [54], [55]. In this case,
Γ is a log-normal distributed r.v. with parameters 𝜇dB and
𝜎dB, that is, 10 log10 Γ is a Gaussian r.v. with mean 𝜇dB and
standard deviation 𝜎dB.8 Since the logarithm is monotonic, the
SEO is lower and upper bounded by:

𝑃𝑜,L(𝑃
★
𝑒 ) = 𝑄

(
𝜇dB − 10 log10 Γ

★
L

𝜎dB

)
, (40a)

𝑃𝑜,U(𝑃
★
𝑒 ) = 𝑄

(
𝜇dB − 10 log10 Γ

★
U

𝜎dB

)
, (40b)

where 𝑄(⋅) is the Gaussian 𝑄-function (see, e.g., [12]).

7For example, for 𝑀 -PSK with ideal channel estimation, the polynomials
will be of degree 𝑁 .

8The PDF of Γ is reported in [11].

2) Inversion of the Optimized Simple Bounds: From the
above discussion it is apparent that the evaluation of the lower-
and upper-bound on the SEO requires finding Γ★

L and Γ★
U. Note

that under some circumstances both Γ★
L and Γ★

U can be obtained
analytically from known equations for roots of polynomials.
For example, the lower and upper bounds on the required SNR
Γ★, for systems employing 𝑀 -PSK signaling with MRC of
two INID branches in the presence of ideal channel estimation,
are given by (41).9

Γ★
L(𝑃

★
𝑒 ) = 𝐴/(2𝑎1𝑎2)

{[
𝐶2,L(𝜙𝑀 , 0)2(𝑎1 − 𝑎2)

2 (41a)

+ 4𝑎1𝑎2𝑆2(𝜙𝑀 , 0)/𝑃 ★
𝑒

]1/2− 𝐶2,L(𝜙𝑀 , 0)(𝑎1 + 𝑎2)
}

Γ★
U(𝑃

★
𝑒 ) = 𝐴/(2𝑎1𝑎2)

{[
𝐶2,U(𝜙𝑀 , 0)2(𝑎1 − 𝑎2)

2 (41b)

+ 4𝑎1𝑎2𝑆2(𝜙𝑀 , 0)/𝑃 ★
𝑒

]1/2− 𝐶2,U(𝜙𝑀 , 0)(𝑎1 + 𝑎2)
}

However, a numerical root evaluation is needed in general.
The polynomial nature of the function implies that the OSBs
are easily invertible for all signaling constellations, diversity
orders 𝑁 , and channel estimation methods, despite the fact
that inverting the exact SEP can be time consuming. Since
𝐼𝑁 (𝜻, 𝜙, 𝜓) is an integral, inverting the exact SEP requires
inversion of a weighted sum of integrals. However, inverting
the OSBs requires only the inversion of a weighted sum
of ratios of polynomials, which can itself be written as a
higher order polynomial. Thus, the OSBs can be inverted more
quickly and with less complexity.

C. SNR Penalty

Starting from the general expression for the SEP of two-
dimensional modulation given in (23) it is possible to define
the SNR penalty with respect to a reference system. The SNR
penalty [27], [28], [38] between a reference system, ‘Ref,’
and the system of interest, ‘B,’ where the reference system
outperforms system ‘B,’ is defined as the necessary increase
in SNR such that ‘B’ performs as well as ‘Ref’. Thus, the
SNR penalty is given by 𝛽(Γ) such that

𝑃𝑒,B (Γ) = 𝑃𝑒,Ref (Γ/𝛽(Γ)) . (42)

For large SNR the asymptotic SNR penalty, 𝛽A, is given by

𝑃𝐴𝑒,B (Γ) = 𝑃𝐴𝑒,Ref (Γ/𝛽A) , (43)

where 𝑃𝐴𝑒,B(⋅) and 𝑃𝐴𝑒,Ref(⋅) are the SEP expressions for
large SNR (asymptotic behavior).

For a given number of diversity branches 𝑁 and constella-
tion, we consider MRC of IID branches with ideal channel
estimation as the reference system, since it provides the
best performance. We then compare this to the SEP for the
cases of 1) MRC of unequal branch power profile (INID
branches), and 2) SSD with equal branch power profile (IID
branches). In both cases, we consider ideal and non-ideal
channel estimation.

9The expressions in (41) also hold for SSD of IID branches when 𝑎1 and
𝑎2 are substituted with 𝑏1 and 𝑏2, respectively, and 𝐴 = 1.
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The general asymptotic SEP expression for the reference
system is given by

𝑃𝐴𝑒,Ref(Γ) =

∑𝑀
𝑖=1 𝑝𝑖

∑
𝑗∈ℬ𝑖

𝑆𝑁 (𝜙𝑖,𝑗 , 𝜓𝑖,𝑗)∏𝑁
𝑛=1 𝜁𝑛

≜ ℒ𝑁,𝑀

Γ𝑁
,

(44)
where ℒ𝑁,𝑀 depends on both 𝑁 and 𝑀 . For 𝑀 -PSK it is
given by

ℒ𝑁,𝑀 =
𝑆𝑁 (Φ𝑀 , 0)

𝑐𝑁MPSK

, (45)

and for 𝑀 -QAM it results in

ℒ𝑁,𝑀 =
𝜔(𝑎)𝑆𝑁

(
Φ2,

𝜋
4

)
+ 𝜔(𝑏)𝑆𝑁 (Φ4, 0)

𝑀 𝑐𝑁MQAM

. (46)

The asymptotic SNR penalties for several cases of interest are
listed below:

∙ Maximal ratio diversity for the case of unequal branch
power profile with ideal channel estimation:

𝛽A =

(
𝑁∏

𝑛=1

𝐴

𝑎𝑛

) 1
𝑁

, (47)

∙ Maximal ratio diversity for the case of unequal branch
power profile with non-ideal channel estimation:

𝛽A =

(
𝑁∏

𝑛=1

𝐴

𝑎𝑛

) 1
𝑁

(48)

×

⎡
⎢⎣
∑𝑀

𝑖=1 𝑝𝑖
∑

𝑗∈ℬ𝑖
𝑆𝑁 (𝜙𝑖,𝑗 , 𝜓𝑖,𝑗)

(
𝑁p 𝜀+𝜉𝑖
𝑁p 𝜀

)𝑁
∑𝑀

𝑖=1 𝑝𝑖
∑

𝑗∈ℬ𝑖
𝑆𝑁 (𝜙𝑖,𝑗 , 𝜓𝑖,𝑗)

⎤
⎥⎦

1
𝑁

,

∙ Subset diversity for the case of equal branch power profile
with ideal channel estimation:

𝛽A =

(
𝑁∏

𝑛=1

1

𝑏𝑛

) 1
𝑁

, (49)

∙ Subset diversity for the case of equal branch power profile
with non-ideal channel estimation:

𝛽A =

(
𝑁∏

𝑛=1

1

𝑏𝑛

) 1
𝑁

(50)

×

⎡
⎢⎣
∑𝑀

𝑖=1 𝑝𝑖
∑

𝑗∈ℬ𝑖
𝑆𝑁 (𝜙𝑖,𝑗 , 𝜓𝑖,𝑗)

(
𝑁p 𝜀+𝜉𝑖
𝑁p 𝜀

)𝑁
∑𝑀

𝑖=1 𝑝𝑖
∑

𝑗∈ℬ𝑖
𝑆𝑁 (𝜙𝑖,𝑗 , 𝜓𝑖,𝑗)

⎤
⎥⎦

1
𝑁

.

Remark: Note that the asymptotic SNR penalties for non-
ideal channel estimation in (48) and (50) are composed of
two terms: the first is the asymptotic SNR penalty related to
the branch power profile or diversity combing method, as in
(47) and (49), while the second is due to the non-ideal channel
estimation which depends on the modulation format and the
estimation accuracy.

Wireless communication systems often operate in the mod-
erate or small SNR regime. Therefore it is of interest to obtain
the SNR penalty for all values of SNR. The SNR penalty at a
given target SEP 𝑃 ★

𝑒 , such that 𝑃𝑒(Γ
★) = 𝑃 ★

𝑒 for the system

under analysis and 𝑃𝑒,Ref(Γ
★
Ref) = 𝑃 ★

𝑒 for the reference system,
is given by

𝛽𝑃𝑒(𝑃
★
𝑒 ) =

𝑃−1
𝑒 (𝑃 ★

𝑒 )

𝑃−1
𝑒,Ref(𝑃

★
𝑒 )

=
Γ★

Γ★
Ref

. (51)

This expression clearly requires inversion of the SEP. As
pointed out before, inversion of the exact SEP is, in general,
difficult. To make this problem analytically tractable we can
use the optimized simple bounds to approximate the SNR
penalty. Using the bounds, it can be shown that:

Γ★
L

Γ★
Ref,U

≤ 𝛽𝑃𝑒(𝑃
★
𝑒 ) ≤

Γ★
U

Γ★
Ref,L

. (52)

As will be apparent from the numerical results presented in
Sec. IV, we have found that an excellent approximation is
given by

𝛽𝑃𝑒(𝑃
★
𝑒 ) ≈ Γ★

U

Γ★
Ref,U

. (53)

The quality of this approximation is a direct consequence of
the tightness of the OSBs.

As an example, when the reference system uses 𝑀 -PSK
signaling with MRC of IID branches and ideal channel esti-
mation, the lower and upper OSBs for the required SNR of
the reference system are given, respectively, by

Γ★
Ref,L =

1

𝑐MPSK

{[
𝑆𝑁(Φ𝑀 , 0)

𝑃 ★
𝑒

] 1
𝑁

− 𝐶𝑁,L(Φ𝑀 , 0)

}
(54a)

Γ★
Ref,U =

1

𝑐MPSK

{[
𝑆𝑁(Φ𝑀 , 0)

𝑃 ★
𝑒

] 1
𝑁

− 𝐶𝑁,U(Φ𝑀 , 0)

}
. (54b)

IV. NUMERICAL RESULTS

In general, the design of diversity systems must take into
account the joint effect of the number of diversity branches,
the combining method, channel estimation, and the channel
characteristics. An understanding of the SEP and SEO is
necessary to assess the performance of mobile digital commu-
nication systems. We will focus on diversity systems where
the branches are subject to independent fading, but do not
necessarily have the same mean power levels.

In this section we present numerical results for applications
of the proposed bounds to the SEP and inverse SEP. We first
examine systems employing 𝑀 -PSK and 𝑀 -QAM signaling
with MRC of unequal branch power profiles (i.e., INID
branches) in Rayleigh fading and log-normal shadowing. Both
ideal and non-ideal channel estimation are investigated for
different numbers of diversity branches and branch power
profiles. We will consider SEPs in the range 10−3 to 10−1,
since these are typical values of interest for uncoded systems.
As an example, we will focus on channels with exponentially
decaying branch power profile parameterized by 𝛿. In this case
𝑎𝑛 = 𝑒−𝛿(𝑛−1) for which

𝑁∏
𝑛=1

𝑎𝑛 = 𝑒−𝑁(𝑁−1)𝛿/2 and 𝐴 =
𝑒−𝛿(𝑁−1)

(
𝑒𝛿𝑁 − 1

)
𝑁 (𝑒𝛿 − 1)

.

The dependence of the exact SEP on the parameter 𝛿
is shown in Fig. 1 for systems employing quadrature PSK
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Fig. 1. Exact SEP as a function of 𝛿 for systems employing QPSK signaling
with MRC of INID branches in the presence of ideal channel estimation.
Various values of Γ/𝐴 and 𝑁 are considered.
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Fig. 2. SEP as a function of Γ (dB) for systems employing 64-QAM
signaling with MRC of INID branches (𝛿 = 0.5) in the presence of ideal
channel estimation. Exact SEP, lower bound with 𝐶𝑁,L(𝜙,𝜓) = 1, lower
bound with optimum 𝐶𝑁,L(𝜙, 𝜓), upper bound with optimum 𝐶𝑁,U(𝜙, 𝜓)
and upper bound with 𝐶𝑁,U(𝜙, 𝜓) = 0 are shown.

(QPSK) signaling with MRC of 𝑁 diversity branches, Γ/𝐴 =
10 dB and 15 dB, in the presence of ideal channel estimation.
While 𝑁 represents the number of diversity branches, the
actual diversity benefit that is achieved depends on 𝛿 and Γ/𝐴.
For example, for Γ/𝐴 = 15 dB and 𝛿 ≥ 1.5 the SEP with 4
branches is almost the same as that with 8 branches. This
implies that the two systems capture the same diversity order
with only a gain difference in Γ due to the different values
of 𝐴. For lower values of Γ/𝐴, the same behavior occurs at
a lower value of 𝛿. For example, when Γ/𝐴 = 10 dB the
SEPs of the two systems are nearly equal for 𝛿 ≥ 1.2. This
figure enables the system designer to quantify the achievable
diversity with respect to the available diversity, and to make
appropriate choices for system design.

Figs. 2 and 3 show the SEP as a function of the SNR for
systems employing 64-QAM signaling with 𝑁 -branch MRC
in the presence of ideal channel estimation. These figures show
the exact SEP; the lower bound given in (4) (i.e., 𝐶𝑁,L = 1);
our lower and upper OSBs; and the asymptotic upper bound in
(2) (i.e., 𝐶𝑁,U = 0). Fig. 2 depicts the SEP of INID channels
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Fig. 3. SEP as a function of Γ (dB) for MRC of IID and INID branches
with ideal channel estimation. The case of 64-QAM with 𝑁 = 4 branches for
various values of 𝛿 is considered. Exact SEP, lower bound with 𝐶𝑁,L = 1,
lower bound with optimum 𝐶𝑁,L, upper bound with optimum 𝐶𝑁,U and
asymptotic upper bound with 𝐶𝑁,U = 0 are shown.
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Fig. 4. SEP as a function of 𝜂 = 𝑁p 𝜀 for systems employing 64-QAM
signaling at Γ = 26 dB with MRC of INID (𝛿 = 0.5) branches in the
presence of non-ideal channel estimation. Lower bound with optimum 𝐶𝑁,L
and upper bound with optimum 𝐶𝑁,U are shown together with simulations.

with 𝑁 = 1, 2, 4, and 8 diversity branches with 𝛿 = 0.5.
Note that the lower bound in (4) departs from the exact SEP
as the number of branches increases. It is remarkable that,
unlike the asymptotic upper bound (2) and lower bound (4),
the OSBs remain tight for all, including low and moderate,
SNRs regardless of the number of branches. Similarly, Fig. 3
shows the SEP with 𝑁 = 4 branches for IID (𝛿 = 0) and INID
(𝛿 = 0.5, 1, and 2) channels. Note that for a target SEP of
10−2 the asymptotic upper bound is about 1.9 dB away from
the exact SEP for IID channels and increases with 𝛿 (i.e., 2.0,
2.7, and 5.3 dB for 𝛿 = 0.5, 1, and 2, respectively), whereas
the OSBs are only fractions of a dB away from the exact SEP
regardless of 𝛿.

We now consider the case of non-ideal channel estimation.
Specifically, Fig. 4 shows the lower and upper OSBs on the
SEP (using the approximate SNR mapping) as a function
of 𝑁p 𝜀 for 64-QAM with 𝛿 = 0.5 and several values of
𝑁 . Clearly, the bounds are very close to each other even
in the presence of non-ideal channel estimation. The figure
also shows the exact symbol error rate obtained through
simulations. The simulation results are in agreement with the
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Fig. 5. Upper and lower bounds on the SEO, with optimized 𝐶𝑁,U and
𝐶𝑁,L, as a function of the median SNR, 𝜇dB, for systems employing 64-
QAM signaling with MRC of INID (𝛿 = 0.5) branches in the presence of
ideal channel estimation. Log-normal shadowing with 𝜎dB = 8 and a target
SEP 𝑃 ★

𝑒 = 10−2 are considered.
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Fig. 6. Upper and lower bounds on the SEO, with optimized 𝐶𝑁,U and
𝐶𝑁,L, as a function of the median SNR, 𝜇dB, for systems employing 64-QAM
signaling with MRC of IID and INID branches (𝑁 = 4) in the presence of
ideal channel estimation. Log-normal shadowing with 𝜎dB = 8 and a target
SEP 𝑃 ★

𝑒 = 10−2 are considered.

OSBs, showing that the simple, invertible bounds, based on the
approximate SNR mapping, accurately predict the SEP. This
figure also shows that, as 𝜂 = 𝑁p 𝜀 increases, the SEP of a
system with non-ideal channel estimation quickly approaches
the SEP of an ideal system (i.e., 𝜂 → ∞). Thus, even for
small values of 𝜂 we can achieve performance which is close
to an ideal system. The ability to quickly produce plots like
these, by using the OSBs, allows one to easily determine the
required 𝑁p 𝜀 for a given target SEP, SNR, 𝛿, and number of
diversity branches.

In addition to the SEP, the SEO is another useful perfor-
mance measure for the design of digital wireless communica-
tion systems. For a fixed SEO corresponding to a given target
SEP, the required median SNR, 𝜇dB, can be determined. This
is useful in the design of digital radio systems with diversity
reception, since 𝜇dB translates to the maximum distance of a
radio-link when the path-loss law is known. In Fig. 5 we show
the OSBs on the SEO as a function of the median SNR, 𝜇dB,
for 64-QAM with ideal channel estimation at a target SEP
of 𝑃 ★

𝑒 = 10−2. We consider 𝑁 = 1, 2, 4, and 8 branches
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Fig. 7. Exact and approximate SNR penalties in dB as a function of the
target SEP, 𝑃 ★

𝑒 , for systems employing 64-QAM signaling with MRC of INID
branches in the presence of ideal channel estimation.
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Fig. 8. Exact and approximate SNR penalties in dB as a function of the
target SEP, 𝑃 ★

𝑒 , for systems employing 64-QAM signaling with H-S/MRC of
IID branches (𝑁 = 8) in the presence of non-ideal channel estimation.

and an INID branch power profile with 𝛿 = 0.5 in a log-
normal shadowing environment with 𝜎dB = 8. Note that in
all cases, the lower and upper bounds are very close to each
other, and thus also to the exact solution. Therefore, a system
designer can easily use the proposed bounds to choose system
parameters without compromising accuracy.

The effect of the parameter 𝛿 on the SEO is shown in
Fig. 6 where the bounds on the SEO as a function of the
median SNR, 𝜇dB, are plotted for 64-QAM with ideal channel
estimation. We consider 𝑁 = 4 branches and different branch
power profiles spanning from IID (𝛿 = 0) to INID (𝛿 = 0.5,
1, and 2) channels. The bounds are evaluated for a target SEP
equal to 𝑃 ★

𝑒 = 10−2 in log-normal shadowing with 𝜎dB = 8.
In all cases the lower and upper bounds are very close to each
other and thus to the exact SEO.

In Figs. 7 and 8 we compare the exact and approximate
SNR penalty as a function of the target SEP for 64-QAM.
For these results a system that employs MRC of IID branches
with ideal channel estimation is used as the reference system.
The approximations are obtained using (53). First, in Fig. 7
we consider MRC of INID branches (𝛿 = 0.5 and 1) with
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ideal channel estimation and 𝑁 = 2, 4, and 8 branches. It can
be seen that the resulting approximation is very close to the
exact penalty in all conditions. Next, in Fig. 8 we consider
H-S/MRC of IID branches (𝑁 = 8) with non-ideal channel
estimation characterized by different values of 𝑁p 𝜀. At a target
SEP of 10−2 the difference in SNR penalty between selection
diversity (𝐿 = 1) and MRC (𝐿 = 𝑁 = 8) is about 5 dB
for 𝜂 = 𝑁p 𝜀 = 2. In general, the computation of the exact
SNR penalty is difficult, whereas it is much easier to use
the proposed bounds to closely approximate the SNR penalty.
Using this figure one can assess the SNR penalty at a particular
target SEP for a specified 𝐿, 𝑁 , and 𝑁p 𝜀. This allows the
system designer to make decisions about how many of the
available branches to combine and how much energy to devote
to the channel estimation process to achieve the desired level
of performance.

V. CONCLUSION

We proposed a new class of optimized bounds for the
SEP of systems utilizing arbitrary two-dimensional signaling
constellations. Specifically, we consider maximal ratio diver-
sity of INID branches and SSD of IID branches, with both
ideal and non-ideal channel estimation. Both the lower and
upper bounds are tight (i.e., fractions of a dB from the exact
SEP) for all, including low and moderate, SNRs of interest,
branch power profiles, diversity techniques, constellation sizes,
and amount of energy devoted to channel estimation. This
property, together with the fact that they are easily invertible,
permits the derivation of tight lower and upper bounds for
the inverse SEP. This enables the system designer to obtain
several important metrics for mobile radio systems, such as
the SEO (i.e., the SEP-based error outage probability) and the
SNR penalty for a target SEP in environments with small-
scale fading superimposed on shadowing. As an example ap-
plication, we investigate the performance of 𝑀 -PSK and 𝑀 -
QAM systems in Rayleigh fading and log-normal shadowing
environments. The proposed bounds are useful for the design
of digital mobile radio systems employing practical diversity
techniques.

ACKNOWLEDGMENTS

The authors wish to thank L. A. Shepp and W. Suwansan-
tisuk for helpful discussions.

REFERENCES

[1] J. Zhang and V. A. Aalo, “Effect of branch correlation on a macrodiver-
sity system in a shadowed rician fading channel,” IEE Electron. Lett.,
vol. 34, no. 1, pp. 18-20, Jan. 1998.

[2] L. Dai, S. Zhou, and Y. Yao, “Capacity analysis in CDMA distributed
antenna systems,” IEEE Trans. Wireless Commun., vol. 4, no. 6, pp.
2613-2620, Nov. 2005.

[3] A. Adinoyi and H. Yanikomeroglu, “Hybrid macro/microdiversity tech-
niques in the reverse-link wireless communication networks,” IEEE
Trans. Wireless Commun., vol. 5, no. 12, pp. 3344-3349, Dec. 2006.

[4] J. Y. Kim and G. L. Stuber, “Performance analysis of macrodiversity
voice/data CDMA systems,” IEEE Trans. Wireless Commun., vol. 5,
no. 8, pp. 2111-2118, Aug. 2006.

[5] D. G. Brennan, “On the maximal signal-to-noise ratio realizable from
several noisy signals,” in Proc. IRE, vol. 43, no. 10, p. 1530, Oct. 1955.

[6] ——, “Linear diversity combining techniques,” in Proc. IRE, vol. 47,
no. 6, pp. 1075-1102, June 1959.

[7] P. A. Bello and B. D. Nelin, “Predetection diversity combining with
selectivity fading channels,” IEEE Trans. Commun. Syst., vol. 10, no. 1,
pp. 32-42, Mar. 1962.

[8] W. C. Lindsey, “Error probabilities for Rician fading multichannel
reception of binary and 𝑁 -ary signals,” IEEE Trans. Inform. Theory,
vol. IT-10, no. 4, pp. 339-350, Oct. 1964.

[9] R. Price and P. E. Green, Jr., “A communication technique for multipath
channels,” in Proc. IRE, vol. 46, no. 3, pp. 555-570, Mar. 1958.

[10] M. Schwarz, W. R. Bennett, and S. Stein, Communications Systems and
Techniques, classic reissue edition. Piscataway, NJ: IEEE Press, 1996.

[11] W. C. Jakes, Ed., Microwave Mobile Communications, classic reis-
sue edition. Piscataway, NJ: IEEE Press, 1995.

[12] M. K. Simon and M.-S. Alouini, Digital Communication over Fading
Channels, 2nd ed. New York: John Wiley & Sons, Inc., 2004.

[13] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill,
Inc., 2001.

[14] C. K. Pauw and D. L. Schilling, “Probability of error of 𝑀 -ary PSK and
DPSK on a Rayleigh fading channel,” IEEE Trans. Commun., vol. 36,
no. 6, pp. 755-758, June 1988.

[15] M. Z. Win and J. H. Winters, “Analysis of hybrid selection/maximal-
ratio combining of diversity branches with unequal SNR in Rayleigh
fading,” in Proc. 49th Annual Int. Veh. Technol. Conf., vol. 1, Houston,
TX, May 1999, pp. 215-220.

[16] M. Z. Win, G. Chrisikos, and J. H. Winters, “MRC performance for
𝑀 -ary modulation in arbitrarily correlated Nakagami fading channels,”
IEEE Commun. Lett., vol. 4, no. 10, pp. 301-303, Oct. 2000.

[17] M. Z. Win and J. H. Winters, “On maximal ratio combining in correlated
Nakagami channels with unequal fading parameters and SNR’s among
branches: an analytical framework,” in Proc. IEEE Wireless Commun.
and Networking Conf., vol. 3, New Orleans, LA, Sept. 1999, pp. 1058-
1064.

[18] ——, “Exact error probability expressions for MRC in correlated
Nakagami channels with unequal fading parameters and branch powers,”
in Proc. IEEE Global Telecomm. Conf., Symp. on Commun. Theory,
vol. 5, Rio de Janeiro, Brazil, Dec. 1999, pp. 2331-2335.

[19] A. Annamalai and C. Tellambura, “Analysis of hybrid
selection/maximal-ratio diversity combiners with Gaussian errors,”
IEEE Trans. Wireless Commun., vol. 1, no. 3, pp. 498-512, July 2002.

[20] W. M. Gifford, M. Z. Win, and M. Chiani, “Diversity with pilot symbol
assisted modulation,” in Proc. Conf. on Inform. Sci. and Sys., Princeton,
NJ, Mar. 2004.

[21] ——, “On the SNR penalty for realistic diversity systems,” in Proc.
Conf. on Inform. Sci. and Sys., Princeton, NJ, Mar. 2004.

[22] ——, “Realistic diversity systems in correlated fading,” in Proc. IEEE
Global Telecomm. Conf., vol. 1, Dallas, TX, Dec. 2004, pp. 457-461.

[23] X. Wang and J. Wang, “Effect of imperfect channel estimation on
transmit diversity in CDMA systems,” IEEE Trans. Veh. Technol.,
vol. 53, no. 5, pp. 1400-1412, Sept. 2004.

[24] L. Xiao and X. Dong, “Effect of imperfect channel estimation on the
performance of selection combining in Rayleigh fading channels,” in
Proc. IEEE Global Telecomm. Conf., vol. 1, Dallas, TX, Dec. 2004, pp.
3641-3645.

[25] B. Xia and J. Wang, “Effect of channel-estimation error on QAM
systems with antenna diversity,” IEEE Trans. Inform. Theory, vol. 53,
no. 3, pp. 481-488, Mar. 2005.

[26] ——, “Analytical study of QAM with interference cancellation for high-
speed multicode CDMA,” IEEE Trans. Veh. Technol., vol. 54, no. 3, pp.
1070-1080, May 2005.

[27] W. M. Gifford, M. Z. Win, and M. Chiani, “Diversity with practical
channel estimation,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp.
1935-1947, July 2005.

[28] ——, “Antenna subset diversity with non-ideal channel estimation,”
IEEE Trans. Wireless Commun., vol. 7, no. 5, pp. 1527-1539, May 2008.

[29] M. Chiani, A. Conti, and C. Fontana, “Improved performance in TD-
CDMA mobile radio system by optimizing energy partition in channel
estimation,” IEEE Trans. Commun., vol. 51, no. 3, pp. 352-355, Mar.
2003.

[30] L. Cao and N. C. Beaulieu, “Bit error rate analysis of hybrid
selection/maximal-ratio diversity combining with channel estimation
error,” in Proc. IEEE Global Telecomm. Conf., vol. 1, Dallas, TX, Dec.
2004, pp. 446-451.

[31] ——, “Closed-form BER results for MRC diversity with channel estima-
tion errors in ricean fading channels,” IEEE Trans. Wireless Commun.,
vol. 4, no. 4, pp. 1440-1447, July 2005.

[32] Y. Chen and N. C. Beaulieu, “SER of selection diversity MFSK with
channel estimation errors,” IEEE Trans. Wireless Commun., vol. 5, no. 7,
pp. 1920-1929, July 2006.

Authorized licensed use limited to: Università degli Studi di Ferrara. Downloaded on June 05,2023 at 09:58:44 UTC from IEEE Xplore.  Restrictions apply. 



2684 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 9, SEPTEMBER 2009

[33] M. Z. Win and J. H. Winters, “Methods and systems for spatial
processing,” U.S. patent 6,804,312, Oct. 12, 2004.

[34] J. H. Winters, Y.-S. Choi, B.-J. J. Kim, A. F. Molisch, M. Z. Win, and
H. Luo, “Method of selecting receive antennas for MIMO systems,”
U.S. patent 7,006,810, Feb. 28, 2006.

[35] ——, “Method of selecting receive antennas for MIMO systems,” U.S.
patent 7,283,798, Oct. 16, 2007.

[36] M. Z. Win and J. H. Winters, “Analysis of hybrid selection/maximal-
ratio combining in Rayleigh fading,” IEEE Trans. Commun., vol. 47,
no. 12, pp. 1773-1776, Dec. 1999.

[37] ——, “Virtual branch analysis of symbol error probability for hybrid
selection/maximal-ratio combining in Rayleigh fading,” IEEE Trans.
Commun., vol. 49, no. 11, pp. 1926-1934, Nov. 2001.

[38] M. Z. Win, N. C. Beaulieu, L. A. Shepp, B. F. Logan, and J. H. Winters,
“On the SNR penalty of MPSK with hybrid selection/maximal ratio
combining over IID Rayleigh fading channels,” IEEE Trans. Commun.,
vol. 51, no. 6, pp. 1012-1023, June 2003.

[39] M. Z. Win, R. K. Mallik, and G. Chrisikos, “Higher order statistics of
antenna subset diversity,” IEEE Trans. Wireless Commun., vol. 2, no. 5,
pp. 871–875, Sept. 2003.

[40] A. F. Molisch, M. Z. Win, and J. H. Winters, “Reduced-complexity
multiple transmit/receive antenna systems,” IEEE Trans. Signal Process.,
vol. 51, no. 11, pp. 2729-2738, Nov. 2003.

[41] A. F. Molisch and M. Z. Win, “MIMO systems with antenna selection—
an overview,” IEEE Microwave, vol. 5, no. 1, pp. 46-56, Mar. 2004.

[42] M.-S. Alouini and M. K. Simon, “Performance of coherent receivers
with hybrid SC/MRC over Nakagami-𝑚 fading channels,” IEEE Trans.
Veh. Technol., vol. 48, no. 4, pp. 1155-1164, July 1999.

[43] ——, “An MGF-based performance analysis of generalized selection
combining over Rayleigh fading channels,” IEEE Trans. Commun.,
vol. 48, no. 3, pp. 401-415, Mar. 2000.

[44] N. Kong and L. B. Milstein, “Average SNR of a generalized diversity
selection combining scheme,” IEEE Commun. Lett., vol. 3, no. 3, pp.
57-59, Mar. 1999.

[45] A. Conti, M. Z. Win, and M. Chiani, “On the inverse symbol error
probability for diversity reception,” IEEE Trans. Commun., vol. 51,
no. 5, pp. 753-756, May 2003.

[46] ——, “Slow adaptive 𝑀 -QAM with diversity in fast fading and shad-
owing,” IEEE Trans. Commun., vol. 55, no. 5, pp. 895-905, May 2007.

[47] A. Conti, M. Z. Win, M. Chiani, and J. H. Winters, “Bit error outage
for diversity reception in shadowing environment,” IEEE Commun. Lett.,
vol. 7, no. 1, pp. 15-17, Jan. 2003.

[48] P. Mary, M. Dohler, J.-M. Gorce, G. Villemaud, and M. Arndt, “BPSK
bit error outage over Nakagami-𝑚 fading channels in lognormal shad-
owing environments,” IEEE Commun. Lett., vol. 11, no. 7, pp. 565-567,
July 2007.

[49] S. Haghani, N. C. Beaulieu, and M. Z. Win, “Penalty of hybrid
diversity for two-dimensional signaling in Rayleigh fading,” IEEE Trans.
Commun., vol. 52, no. 5, pp. 694-697, May 2004.

[50] ——, “Large penalty of hybrid diversity with uncoded modulation in
slow Rayleigh fading,” IEEE Trans. Wireless Commun., vol. 5, no. 9,
pp. 2363-2368, Sept. 2006.

[51] H. S. Abdel-Ghaffar and S. Pasupathy, “Asymptotical performance of
𝑀 -ary and binary signals over multipath/multichannel Rayleigh and
Rician fading,” IEEE Trans. Commun., vol. 43, no. 11, pp. 2721-2731,
Nov. 1995.

[52] A. Conti, D. Panchenko, S. Sidenko, and V. Tralli, “Log-concavity
property of the error probability with application to local bounds for
wireless communications,” IEEE Trans. Inform. Theory, vol. 55, no. 6,
pp. 2766-2775, June 2009.

[53] J. A. Reeds, L. A. Shepp, and M. Z. Win, “Monotone parametric depen-
dence of a generalized mean,” Massachusetts Institute of Technology,
Laboratory for Information & Decision Systems (LIDS) internal report,
July 2008.

[54] D. C. Cox, “Delay doppler characteristics of multipath propagation
at 910 MHz in a suburban mobile radio environment,” IEEE Trans.
Antennas Propag., vol. AP-20, no. 5, pp. 625-635, Sept. 1972.

[55] V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta,
B. Kulic, A. A. Julius, and R. Bianchi, “An empirically based path
loss model for wireless channels in suburban environments,” IEEE J.
Select. Areas Commun., vol. 17, no. 7, pp. 1205-1211, July 1999.

Andrea Conti (S’99-M’01) received the Dr.Ing.
degree in telecommunications engineering and the
Ph.D. degree in electronic engineering and computer
science from the University of Bologna, Italy, in
1997 and 2001, respectively. Since 2005, he is
assistant professor at the University of Ferrara, Italy.
Prior to joining the University of Ferrara he was
with Consorzio Nazionale Interuniversitario per le
Telecomunicazioni (CNIT, 1999-2002) and Istituto
di Elettronica e di Ingegneria dell’Informazione e
delle Telecomunicazioni, Consiglio Nazionale delle

Ricerche (IEIIT/CNR, 2002-2005) at the Research Unit of Bologna, Italy. In
summer 2001, he joined the Wireless Section of AT&T Research Laboratories,
Middletown, NJ. Since February 2003, he has been a frequent visitor at
the Laboratory for Information and Decision Systems (LIDS), Massachusetts
Institute of Technology (MIT), Cambridge, where he is presently research
affiliate.

His current research interests are in the area of wireless communications
including localization, adaptive transmission and multichannel reception,
coding in faded multiple-input multiple-output channels, wireless cooperative
networks, and wireless sensor networks.

He is a coauthor of “Wireless Sensor and Actuator Networks: Enabling
Technologies, Information Processing and Protocol Design” (Elsevier, 2008).
He is an Editor for the IEEE TRANSACTIONS ON WIRELESS COMMUNI-
CATIONS and was Lead Editor for the EURASIP JASP (S.I. on Wireless
Cooperative Networks, 2008). He is TPC Vice-Chair for IEEE WCNC 2009,
Co-Chair of the Wireless Comm. Symp. for IEEE GCC 2010, and has served
as a Reviewer and TPC member for various IEEE journals and conferences.
He is currently serving as secretary of IEEE RCC for the period 2008-2010.

Wesley M. Gifford (S’03) received the B.S. degree
(summa cum laude) from Rensselaer Polytechnic
Institute in Computer and Systems Engineering -
Computer Science in 2001. He received the M.S.
degree in electrical engineering from Massachusetts
Institute of Technology (MIT) in 2004.

Since 2001, Wesley M. Gifford has been with the
Laboratory for Information and Decision Systems
(LIDS), MIT, where he is now a Ph.D. candidate.
His main research interests are in the area of wire-
less communications, specifically multiple antenna

systems, ultra-wide bandwidth systems, and measurement and modeling of
propagation channels. He spent the summer of 2004 and 2005 at the Istituto
di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni
(IEIIT), University of Bologna, Italy as a visiting research scholar.

He is currently serving as a member of the Technical Program Committee
(TPC) for the IEEE Global Communications Conference in 2009 and has
served as a TPC member for the IEEE International Conference on Commu-
nications in 2007 and a TPC Vice Chair for the IEEE Conference on Ultra
Wideband in 2006. Wesley M. Gifford was awarded the Rensselaer Medal in
1996, the Charles E. Austin Engineering Scholarship in 1997-2000, and the
Harold N. Trevett award in 2001. He received the Frederick C. Hennie III
award for outstanding teaching performance in 2003, and a Claude E. Shannon
Fellowship in 2007 at MIT. In 2006 he received a best paper award from the
IEEE First International Conference on Next-Generation Wireless Systems
and a best paper award from the ACM International Wireless Communications
and Mobile Computing Conference.

Moe Z. Win (S’85-M’87-SM’97-F’04) received
both the Ph.D. in Electrical Engineering and M.S. in
Applied Mathematics as a Presidential Fellow at the
University of Southern California (USC) in 1998.
He received an M.S. in Electrical Engineering from
USC in 1989, and a B.S. (magna cum laude) in
Electrical Engineering from Texas A&M University
in 1987.

Dr. Win is an Associate Professor at the Mas-
sachusetts Institute of Technology (MIT). Prior to
joining MIT, he was at AT&T Research Laboratories

for five years and at the Jet Propulsion Laboratory for seven years. His
research encompasses developing fundamental theory, designing algorithms,
and conducting experimentation for a broad range of real-world problems.
His current research topics include location-aware networks, time-varying
channels, multiple antenna systems, ultra-wide bandwidth systems, optical
transmission systems, and space communications systems.

Authorized licensed use limited to: Università degli Studi di Ferrara. Downloaded on June 05,2023 at 09:58:44 UTC from IEEE Xplore.  Restrictions apply. 



CONTI et al.: OPTIMIZED SIMPLE BOUNDS FOR DIVERSITY SYSTEMS 2685

Professor Win is an IEEE Distinguished Lecturer and an elected Fellow
of the IEEE, cited for “contributions to wideband wireless transmission.” He
was honored with the IEEE Eric E. Sumner Award (2006), an IEEE Technical
Field Award, for “pioneering contributions to ultra-wide band communications
science and technology.” Together with students and colleagues, his papers
have received several awards including the IEEE Communications Society’s
Guglielmo Marconi Best Paper Award (2008) and the IEEE Antennas and
Propagation Society’s Sergei A. Schelkunoff Transactions Prize Paper Award
(2003). His other recognitions include the Laurea Honoris Causa from the
University of Ferrara, Italy (2008), the Technical Recognition Award of the
IEEE ComSoc Radio Communications Committee (2008), Wireless Educator
of the Year Award (2007), the Fulbright Foundation Senior Scholar Lecturing
and Research Fellowship (2004), the U.S. Presidential Early Career Award
for Scientists and Engineers (2004), the AIAA Young Aerospace Engineer of
the Year (2004), and the Office of Naval Research Young Investigator Award
(2003).

Professor Win has been actively involved in organizing and chairing a
number of international conferences. He served as the Technical Program
Chair for the IEEE Wireless Communications and Networking Conference
in 2009, the IEEE Conference on Ultra Wideband in 2006, the IEEE
Communication Theory Symposia of ICC-2004 and Globecom-2000, and the
IEEE Conference on Ultra Wideband Systems and Technologies in 2002;
Technical Program Vice-Chair for the IEEE International Conference on
Communications in 2002; and the Tutorial Chair for ICC-2009 and the IEEE
Semiannual International Vehicular Technology Conference in Fall 2001. He
was the chair (2004-2006) and secretary (2002-2004) for the Radio Communi-
cations Committee of the IEEE Communications Society. Dr. Win is currently
an Editor for IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS.
He served as Area Editor for Modulation and Signal Design (2003-2006),
Editor for Wideband Wireless and Diversity (2003-2006), and Editor for
Equalization and Diversity (1998-2003), all for the IEEE TRANSACTIONS

ON COMMUNICATIONS. He was Guest-Editor for the PROCEEDINGS OF THE

IEEE (Special Issue on UWB Technology & Emerging Applications) in 2009

and IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (Special
Issue on Ultra -Wideband Radio in Multiaccess Wireless Communications) in
2002.

Marco Chiani (M’94-SM’02) was born in Rimini,
Italy, in April 1964. He received the Dr. Ing. degree
(magna cum laude) in Electronic Engineering and
the Ph.D. degree in Electronic and Computer Sci-
ence from the University of Bologna in 1989 and
1993, respectively. Dr. Chiani is a Full Professor at
the II Engineering Faculty, University of Bologna,
Italy, where he is the Chair in Telecommunication.
During the summer of 2001 he was a Visiting Scien-
tist at AT&T Research Laboratories in Middletown,
NJ. He is a frequent visitor at the Massachusetts

Institute of Technology (MIT), where he presently holds a Research Affiliate
appointment. Dr. Chiani’s research interests include wireless communication
systems, MIMO systems, wireless multimedia, low density parity check codes
(LDPCC) and UWB. He is leading the research unit of University of Bologna
on cognitive radio and UWB (European project EUWB), on Joint Source
and Channel Coding for wireless video (European projects Phoenix-FP6 and
Optimix-FP7), and is a consultant to the European Space Agency (ESA-
ESOC) for the design and evaluation of error correcting codes based on
LDPCC for space CCSDS applications. Dr. Chiani has chaired, organized
sessions and served on the Technical Program Committees at several IEEE
International Conferences. In January 2006 he received the ICNEWS award
“For Fundamental Contributions to the Theory and Practice of Wireless
Communications.” He was the recipient of the 2008 IEEE ComSoc Radio
Communications Committee Outstanding Service Award. He is the past
chair (2002-2004) of the Radio Communications Committee of the IEEE
Communication Society and past Editor of Wireless Communication (2000-
2007) for the IEEE TRANSACTIONS ON COMMUNICATIONS.

Authorized licensed use limited to: Università degli Studi di Ferrara. Downloaded on June 05,2023 at 09:58:44 UTC from IEEE Xplore.  Restrictions apply. 


