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This paper introduces photon-varied quantum states (PVQSs), which generalizes the non-classical
states obtained via photon addition or subtraction operations. We provide a unified characterization
of PVQSs in terms of characteristic function, quasi-probability distribution, Fock representation, and
Mandel Q-parameter. In the special case of photon-varied Gaussian states (PVGSs), the character-
istic functions and the quasi-probability distributions are found to be in a simple canonical product
structure. Necessary and sufficient conditions for the negativity of the quasi-probability distribu-
tions are also obtained for PVGSs. The unified characterization enables the design and analysis of
quantum systems that exploit the non-Gaussian properties of PVQSs.

I. INTRODUCTION

Non-classical states are a key enabler for quantum
communications [IH4], quantum sensing and metrol-

ogy [BHIT], quantum computation [12HI4], and quan-

tum cryptography [I5HIS] in both the optical [T9-22]
and microwave [23H26] domains. In particular, Gaus-

sian states (e.g., squeezed states) have been considered
extensively in quantum information theory for provid-
ing non-classicality in continuous variables systems [27-
[33]. However, Gaussian states lack some desirable prop-
erties (e.g., Wigner function negativity) [30] for quan-
tum supremacy in various applications including quan-
tum sensing and quantum computing [10} 34]. Therefore,
it is important to identify and characterize new classes
of non-Gaussian states that offer performance gain, yet
are easy to prepare, in quantum systems and networks.

Photon-added quantum states (PAQSs) [35H38] and
photon-subtracted quantum states (PSQSs) [39-43] are
two important classes of non-Gaussian states that ex-
hibit non-classical behaviors [44H49]. The non-Gaussian
quantum states obtained by performing photon-addition
or photon-subtraction operations on a Gaussian state
are called photon-added Gaussian states (PAGSs) and
photon-subtracted Gaussian states (PSGSs), respec-
tively. The benefits of PAGSs and PSGSs have been
shown for several applications, including quantum com-
munications [50H52], quantum key distribution [53H55],
and quantum sensing [56H58]. While significant progress
has been made on the last three decades [4, B5H43], a
complete and unified characterization of photon-added
and photon-subtracted states (in terms of characteristic
functions, quasi-probability distributions, Fock represen-
tation, and Mandel Q-parameter) is missing.
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FIG. 1. Schematic representation of the different classes of
photon-varied states examined in this paper.

The goal of this paper is to characterize the classes of
PAQSs and PSQSs in a unified framework. Hereafter, we
refer to these classes of quantum states as photon-varied
quantum states (PVQSs). We show that photon-varied
Gaussian states (PVGSs) have a simple canonical struc-
ture and exhibit a non-classical behavior, including nega-
tive quasi-probability distributions and a sub-Poissonian
photon number distribution (i.e., negative Mandel Q-
parameter [59]). This paper develops a framework for
a unified characterization of PVQSs (see Fig. [I). The
key contributions of this paper can be summarized as
follows:

e we characterize PVQSs in terms of characteristic
function, quasi-probability distribution, Fock rep-
resentation, and Mandel @)-parameter; and
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e we provide the unified characterization for PVGSs
in a simple canonical product structure and quan-
tify their non-classicality.

The characterization of PVQSs enables the design of
quantum states with desirable nonclassical properties.
The remaining sections are organized as follows. Sec-
tion [T establishes a framework for the characterization of
PVQSs. Section [[T]] characterizes PVGSs in a canonical
product structure. Final remarks are given in Section[[V]
Notations: Operators are denoted by bold uppercase
letters. The sets of complex numbers and of positive in-
tegers are denoted by C and N, respectively. For n € Z:
n=+4forn >0,and 7 = — for n < 0. For z € C:
|z| and arg(z) denote the absolute value and the argu-
ment, respectively; z; and z; denote the real part and the
imaginary part, respectively; z* is the complex conjugate;

z2=1[z 2| is the augmented vector associated with z,
and + = v/—1. For z € C, the Wirtinger derivatives are
9 _ 1,0 lé) 9 _ 1
defined as a— = 3(g; —13;) and 5= = (82 +1 C,)Z‘)

The trace and the adjoint of an operator are denoted by
tr{-} and (-)T, respectively. The annihilation, the cre-
ation, and the identity operators are denoted by A, AT,
and I, respectively. The displacement operator with pa-
rameter 4 € Cis D, = exp {MAT — ,u*A}. The rotation
operator with parameter ¢ € Ris R, = exp {—quATA}.
The squeezing operator with parameter z € C is S, =
exp {1z(AT)2—12A?}. For two operators X and Y, the
commutator is denoted by [X,Y]_ = XY — Y X. For
a quantum state =, the expectation value of an observ-
able A is (A) = tr{ZA}. Notation M indicates the
Moore—Penrose pseudoinverse of a matrix M [60].

II. PHOTON-VARIED QUANTUM STATES

Consider a single bosonic mode described by the
quadrature operators @ and P satisfying the canoni-
cal commutation relation [Q,P]_ = I, and let A =

(Q+1P)/v2 and AT = (Q —1P)/v/2 [61]. Let = be the

density operator representing a state of the single bosonic

mode. The PAQS associated with = is defined as

) _ (ADFE A

+ (k)
Ny

[

(1)

where k € N is the number of addition operations, and
NJ(rk) = tr{(A")*ZA*} is the normalization constant.
Analogously, the PSQS associated with = is defined as

sk 2= (2)

where k£ € N is the number of subtraction operations, and
N® = tr{ A*Z(AT)*} is the normalization constant.
For notational convenience, we introduce the notation

=" and N*

&y 3 ) for unifying the characterization of PAQSs

(t = 1) and PSQSs (t = —1), obtained from the initial
state =. Note that the PVQS E%k) has the same rotation

—

symmetry as the initial state =, i.e., a rotation of the

initial state = produces a correspondlng rotation to ._%k).

A. Characteristic function

For a quantum state =, the s-ordered characteristic
function x(&, s) is defined by [62]

\(&.5) = exp{ S |¢? {=D, }. (3)

Note that the characteristic function can be used
to determine the normalization constant Nﬂ(k) as [62,

Eq. (6.26)]

an
k X(gu _t)

Ny = a{S{AN A} = s e

[

£€=0

where {(A‘L)’“Ak}S denotes the s-ordered product of

(AN)* and A*, with s € C, as defined in [63]. Recall
that the normal, antinormal, and symmetrically ordered
products are obtained with s = 1, s = —1, and s = 0,
respectively. Note also that, the use of definition for
determining the characteristic function of a PVQS does
not reveal the functional relationship between the PVQS
and the corresponding initial state.

The following theorem relates the characteristic func-

tion of a PVQS = ) to that of the initial state =.

Theorem 1 (Characteristic function of a PVQS). Let
x(&, s) and X(k)(f, s) be the s-ordered characteristic func-

~()

tion associated with = and ="/, respectively. The re-

lation between the two characteristic functions is given
by

k 2k
(k)(g 5) = (=1) e%t\fﬁai (& s)e = 1EF ()
' ") Eagxk X\Ss :
Ny 9Erog
Proof. See Appendix [A] O

B. Quasi-probability distribution

For a quantum state =, the s-ordered quasi-probability
distribution W (a, s) is defined by [62]

W) =% [ xese = eee ()

where d2¢ = d¢.d&; . Recall that, the Wigner W-function,
the Glauber—Sudarshan P-function, and the Husimi Q-
function are obtained with s = 0, s = 1, and s = —1,
respectively [27H31].
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The following theorem relates the s-ordered quasi-
probability distribution of a PVQS Eék) to that of the
initial state =.

Theorem 2 (Quasi-probability distribution of a PVQS).
Let W(a,s) and W(k)(a,s) be the s-ordered quasi-

1]
probability distribution associated with = and Et(k), re-
spectively. For s # —t, the relation between the two

s-ordered quasi-probability distributions is given by

(k}) _ (S + t)Qk 2\a|2 an‘ QLOC‘fQ
Waes) 4’<Nj(k) T Sakgart Wlas)emw
7

(6)

For s = —t, the relation is found to be

k |a|2k
Wﬂ( Na,—t) = G Wi(a,—t). (7)
#

Proof. See Appendix [B] O

Remark. Theorems [I] and 2] establish simple and par-
allel differential relations between PVQS E'ék) and initial

—

state = in terms of characteristic function and quasi-
probability distribution, respectively.

C. Fock representation

For a quantum state =, the representation in the Fock
basis {|n)}nen is given by

E=3Y (nEm)n)m|. (8)
n=0m=0

The following theorem relates the Fock representation of

a PVQS Eﬂ(k) and that of the initial state =.

Theorem 3 (Fock representation of a PVQS). The re-
lation between the Fock representation of E'ék) and that
of = is found to be

(k) 1 ) n+ k| Z|m+k) fort =—1
(n] ‘:’ﬂ Im) = %) ’
Nﬂ Cnm(E) for t = +1
(9)
where
® _ [+ Ek)(m+Ek)!
G = nlm)!
C’r(Lk—)k,m—k (n—k|E|m—Fk)
cnm(E) = for both n,m > k

0 otherwise

Proof. See Appendix [C} O

D. Non-classical properties
For a quantum state =, the Mandel Q-parameter is
an indicator of its non-classicality, which quantifies the
sub-Poissonian behavior of the photon number statistic,
defined as [59]

((A1)2A2) — (ATA)°
(ATA)

Mq = (10)

In particular, by using the anti-normal order form [63] of
(AN A", we obtain

(=1)"n! z”: <n> (=1 N+)
: ) —
N© =\ for t=+1
<(AT)”A">ﬂ = (11)
N(k+7L)
— fort=-1.
N®

Note that is general in n. The Mandel Mgqg-
parameter for a PAQS E'S_k) and a PSQS =™ is obtained
by applying with n = 2 in as given by

NJ(rk+2)_2NJ(rk) NJ(rkJrl) N
T el e S fori=+
M N N Ny
Qﬂ_ N(k+2) N(k+1)

for t=—1.

N£k+1) o Ngk)

III. PHOTON-VARIED GAUSSIAN STATES

This section shows how to utilize the results of Sec. [II
to characterize the quantum states obtained by applying
a photon-variation operation on a Gaussian state.

A. Preliminaries
1. Single-mode Gaussian states

A single-mode Gaussian state is a quantum state with a
Gaussian Wigner function in the R? phase space spanned
by the eigenvalues of @ and P [27H31], i.e.,

Nﬁexp{—%(m—i)TV_l(m—i)} (12)

where * = [q p]T

WG(x) =

€ R? is the vector of eigenvalues

of @ and P, ¢ = [g ﬁ]T € R? is the mean value,
and V' is the covariance matrix with entries V;; =
271 ({X, — (X)), X, — (X,)}), and X = [Q P].

Note that the results of Section [[T] are applied by map-
ping the quadrature operators Q and P to the mode op-
erators A and A' via the linear transformation described
in Section [[I} In this way, the real Gaussian distribution



can be rewritten as a complex Gaussian distribu-
tion [64HE7] by introducing, for the complex numbers
a=2"Y2(q+p) and p = 27/2(G+ 1), the augmented
vectors & = Jx and 1 = J&, and the augmented covari-
ance matrix Cy = JV JT, where J is

1 1 »
=354
Therefore the s-ordered characteristic function in the

complex variable £ of a Gaussian state with augmented
mean £ and augmented covariance matrix C is given by

xc(&,s) :exp{—;ETZC’SZTEV—i— (Z/I)TEV} (13)

where
C,=Co— 21 (14)
and Z is the Pauli matrix defined as
1 0
2-[1 0] 5

The matrix Cj represents the augmented covariance ma-
trix of the symmetrically ordered characteristic function.
Recall that every Gaussian state can be expressed as
a displaced noisy squeezed state with noise parameter
7 € R and squeezing factor z € C [29], i.e

== = T
£ =R,S.D,Z.,D!SIR],

where

AT

p— . - n
B = 7;0 T el

is a thermal state with mean number of photons n given
by tr{Z AT A}. The matrix Cy can be rewritten as

Co=(n+ 1) [cpsh(zr) sinh(zr)e—lj

2/ |sinh(2r)e*® cosh(2r) (16)

The s-ordered quasi-probability distribution is thus given
by the complex Fourier transform of

Wal(a, s) =

1 1
———expy —=(a— @) C N (a ﬁ)}
my/det C, { 2
(1
where, by applying (16)) in (14),

detCy = (ﬁ+ ?)2—

7)

s(27 4 1)sinh®(r).  (18)

Note that 1mphes that there exists a threshold Sth
such that detC > 0 only for s < s, [68, 69]/' By
assuming det Cy # 0,

Col= detlé's (ZC’OZT _ §I> .

I In the following, the existence of Wg (a, s) and thus the invert-
ibility of Cjs is assumed.

2.  Generalized Hermite polynomials

For a symmetric matrix M, the two-variable general-
ized Hermite polynomials are defined by the generating
function [70H72]

Sy
n'm'

n=0m=0

(x; M) = exp {uTMu+mTu}.

(19)
Note that, this paper has implicitly introduced
the compact notation Hg, (z;M) to denote

HE (21, Myy; w2, Ma|2M,2) in [71].

Two-variable generalized Hermite polynomials obey
the following property that is a generalization of [72]
Eq. (7.3.9)].

Lemma 1. For every M = M7T and d € C?,

aern

7%wTMm+dTm
0xT' 0z}
1
= (~1)"HE, (M — d; — M)e3® Metd'e,
(20)

Proof. From the definition of the two-variable gen-
eralized Hermite polynomials, it follows that

Sy
nlm!

n=0m=0

1

77mTMm+dTmH§7m(Mm o d; 7§M)

= efé(mfu)TM

(z—u)+d" (x—u) ) (21)

Equation (20)) follows from comparing each term in the
Taylor expansmn of the right side of (| . O

For an augmented Hermitian matrix C, we define new
polynomials 77, ,,(x; C) as follows

Honn(x;C) = HE, , (Xx; XC) (22)
where X is the Pauli matrix defined as
01
X - [1 0} .
These polynomials are related to Laguerre polynomials
via

t
Ho (b5 = 1) = ™" (=t HMLU T (b as) . (23)
Notice that the two-variable generalized Hermite poly-
nomials are a generalization of the two-variable Hermite
polynomials [73H76].

B. Characterization

Consider the initial state = to be Gaussian, as de-
scribed in Sec. The characterization of the corre-
sponding PVGS E'ﬂk) is given by the following theorem.
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Theorem 4. The s-ordered characteristic function
X%k) (&, s) and quasi-probability distribution Wék) (a, 8) of
a PVGS are, respectively, given by

1
X6 s) = AT (O xa(6 s) (24a)
Ny
W (a,5) = ——BW () We(a, ) (24b)
7\ N%k) 1.5 G\
1

where xc(§,s) and Wg(w, s) are the s-ordered charac-
teristic function and quasi-probability distribution of the

initial Gaussian state, respectively. The quantity Nﬂ(k)

and the non-Gaussian functions A(ﬂk) (£), and B%ks) () are

given by
. 1 .
. 1.
A%k)(é) = (D) Ak (Al + Zj; — 5 Ar) (25b)

(s ; t)2k<%c,k(Bt,sd - C ' _%Bt,s)
B%,s)(a) = for s # —t
||k for s = —t
(25¢)
with
A =2zC_,Z' (26a)
B,,=C;'+ 2 (26b)

s+

Proof. See Appendix D] O

Remark. Theorem [4 reveals the phase-space struc-
ture of a PVGS: the s-ordered characteristic function
and quasi-probability distribution have a simple canon-
ical product structure. Note that the argument of the

multiplicative terms A%k) (&) and B_;ks) () is a linear trans-

formation [66]. In particular, for the s—ordered quasi-
probability distribution, a displacement g of the initial
Gaussian state produces a corresponding displacement
of the multiplicative term, whereas a variation of the co-
variance matrix C, produces a corresponding variation
of the augmented matrix Bt,s.

Figure [2| shows the Wigner W-function W(a) =
W(a,0) of a PVGS for different values of ¢, k, and 7
with 4 = 0, and r = —0.5. Notice that the Wigner
function of a PAGS (t = +1) gets streched and loses its
negativity as 7 increases. Instead, the Wigner function
of a PSGS (t = —1) has a rather different behavior: as 7
increases the Wigner function gets streched, changes its
shape, and loses its negativity.

Figure [3| shows the Wigner W-function W(a) =
W(a,0) of a PVGS for different values of ¢, k, and 7
with g =1, and r = —0.5. In comparison to Figure [2] it
can be observed that the shapes of the function changes
slightly. This can be attributed to the different shifts of
the multiplicative terms in (24D)).

Figure [4] shows the Mandel Q-parameter of a PVGS,
as a function of u and r, for different values of ¢, k, and 7.
Note that Mq increases as the magnitude of the squeez-
ing parameter r increases and as n increases. Note also
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that the Mq of a PSGS is more affected by noise with
respect to a PAGS. Moreover, the range of values of u

and r for which Mq is negative is wider in the case of
PAGS compared to PSGS.

C. Special cases

The results of Theorem [] can be specialized in the
presence of a single photon-variation operation (k = 1)
or in the absence of squeezing (r = 0) as in the following.

1. Single photon-varied Gaussian states

Consider a single PVGS, i.e., k = 1. This is an impor-
tant special case since these states are easy to prepare
and have been generated in a laboratory [44-48]. Par-
ticularizing Theorem [4 to the case k = 1 leads to the
following.

Corollary 1. The s-ordered characteristic function
X%D (&, s) and quasi-probability distribution Wél) (a, 8) of
a single PVGS are, respectively, found to be

1

X (€9 = A (€ xa () (27a)
7
1

WiV(a,s) = N(I)nga) Wal(a, 5) (27b)

7

where xc(§,s) and Wg (o, s) are the s-ordered charac-
teristic function and quasi-probability distribution of the

initial Gaussian state, respectively. The quantity Nﬂ(l)

and the non-Gaussian functions A(ﬂl) (&), and B—;lz () are

given by
N = |u2+ (m+ 1) cosh(2r) + 3 (28)
[ 2 2
1. . .
AD(©) = S(Ak— Zp) (A + Z) + [Ady (29)

§||Bt Sd - CV’S_I[,VL }; — [Bt,s]l,l for s 75 —t

for s = —t
(30)

with A; and Bt,s given in (26a)) and (26bl), respectively.

Corollary enables the derivation of a necessary
and sufficient condition for the negativity of the quasi-
probability distribution for a single PVGS. The nega-
tivity of the quasi-probability distribution, in particular
that of the Wigner function (s = 0) [77], is an impor-
tant indicator of non-classicality for any state and of non-
Gaussianity for pure states [78],[79]. Moreover, negativity
of the Wigner function serves as a resource for quantum
systems [80] and can provide an advantage in quantum

computing [34].

—
=

Proposition 1. Let the initial state = be Gaussian,

and let E'%l) be the corresponding single PVGS. Then,
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Wﬂ(l)(a, s) < 0 for some « € C, if and only if,
» Lis et st -1 12
[Bt,S]l,l > §HBt,th,s p—C; N| 9

(31)

where B; , is defined in (26b).

Proof. Recall that, from the properties of the Moore-
Penrose pseudoinverse, B;r .C. 11 is the minimal least-
square solution to the linear system B; ;& = C; g [60)
R1], i.e., for every z € C? | the following bound holds

Bz~ C. |, > | BB .Co - C ), (32)

9

From (27b) it follows that Wﬂ(l)(a7 s) < 0 if and only if

Bélz(a) < 0. From (30), Bélz (o) < 0 if and only if

2

5 1o o e
[Bt,s]l,l > §HBt,sa - Cs 1/»" 2 (33)

Equation follows by applying in . O

Corollary 2. If Bt,s is invertible, a necessary and suffi-
cient condition for the negativity of the quasi-probability

distribution Wiﬁl) (o, 8) is

[Bt75]171 >0. (34)
Proof. The necessary condition is obtained by noticing
that the right-hand side of is non-negative. If By g
is invertible, then B;‘ s = Btf L and thus the right-hand
side of is equal to zero. O

Remark. This corollary gives a condition for the nega-
tivity of the quasiprobability distributions. In particular,
by applying in with s = 0, the condition for the
negativity of the Wigner function can be reduced to

cosh(2r)

2n+1
Note that this condition is always satisfied by PAGSs
(t = +1). Conversely, for PSGSs (t = —1), the condition
is satisfied only if cosh(2r) > 2n4+1. This means that, for
PSGSs, thermal noise has to be compensated by squeez-
ing to guarantee the negativity of the Wigner function.
This condition generalizes the condition for the case of
no displacement, i.e., u = 0, provided in [43]. Therefore,
can be used to design PSGSs with a negative Wigner
function.

+t>0. (35)

2. Photon-varied coherent states

Consider a photon-varied coherent state (PVCS), i.e.,
the initial state = is a coherent state (r = 0 in (16])). This
is another important special case since coherent states
can be easily prepared. For a PVCS the representation of

the state Eék) reduces to the following simple structure.

Corollary 3. The s-ordered characteristic function
X%k) (&, s) and quasi-probability distribution Wiﬁk) (a, s) of



a PVCS are, respectively, found to be

1
X (€ ) = N%,QA;“ (€) xal(&, s) (362)
t|
; 1
Wi (a,s) = T B () Wa (o 5) (36b)

[l

where x¢(§,s) and Wg(w, s) are the s-ordered charac-
teristic function and quasi-probability distribution of the

initial Gaussian state, respectively. The quantity Nﬂ(k)

and the non-Gaussian functions A(k)(@7 and B () are

1] tl,s
given by
2
k) _ gy LR ]
N =m(ar 5) (- ) (37)
®) ey — 1t 141t\*
AP (e) k.(n+—2

and By _; = |a|?! for s = —t, while for s # —t

_ k
(n+ (s +1)
2n+1—s

4(n + 1t 2
x Ly, (A _|: 2 ) o — _S T I .
(s+t)2n+1—23s) 2n+1+t
(39)
Proof. See Appendix [E] O

IV. CONCLUSION

This paper introduced the class of PVQSs, generated
by photon-addition and photon-subtraction operations
on any initial quantum state, and developed a framework
for their unified characterization in terms of character-
istic function, quasi-probability distribution, and Fock
basis. In the case of PVGSs, where the initial state is
Gaussian, the characterization is found to be in a simple
canonical product structure for both the characteristic
function and the quasi-probability distribution. Neces-
sary and sufficient conditions are also given for the nega-
tivity of the quasi-probability distributions. The findings
of this paper open the way to the use of PVQSs with de-
sirable non-classical properties in various applications of
quantum systems and networks.
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Appendix A: Proof of Theorem

By using the anti-normally ordered form for the dis-

placement operator, the s-ordered characteristic function

(k)

associated with the state = can be written as

1 s .
Xf)(fas) = m° Slel® tr{EAk.e_g AeéAt(AT)k}.
N

(A1)
By applying the identity
a2k N +
- =Zo—§TAEAT L _q\k
der I tr{_e e } (-1)
X tr {E’Ake*E*AegAJr (Af)k}

(A1) can be rewritten in terms of Wirtinger derivatives
as

(=D*

e
N®

s+1 2 2k *

Xf) (Ea 5) = el 85(’95” tr {5675 AegAT} .
(A2)
Equation , for t = 1, is obtained from by ex-
pressing the displacement operator in the symmetrically

ordered form.

By using the normally-ordered form for the displace-
ment operator, the s-ordered characteristic function as-

=(k)

sociated with the state &)’ can be written as

1 s *
W06 5) = —gre T i { S(ANeEA A0k
N

(A3)
By applying the identity
o2k P g
- ZALA AL \k
6gkag*ktr{_e e } (-1)
X tr {E(AT)kegATe_g*AAk}

(A3) can be rewritten in terms of Wirtinger derivatives
as

_1\k oe1 .2 2k
(1" agrjee 0 r{

(k) _ = EAT —¢*A
X (575)_ Nik)eQ aé_kaé_*kt & e }

(Ad)
Equation , for t = —1, is obtained from (A4)) by ex-
pressing the displacement operator in the symmetrically
ordered form.

Appendix B: Proof of Theorem [2]

The s-ordered quasi-probability distribution W (a, s)

associated with the state E’%k)

transform of , ie.,

is given by the Fourier
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—1)k s+t 2 * * 82k s+t 2
Wb ( / L[] bag"—a"e s) e R 2 Bl
Pl = S ¢ (B1)
Integration by parts in (B1)) then leads to
k 2k
(k) (=1) —sptigr _ 07 sptigpiagtoate g2
W—‘ ( ) N_(‘k:) (57 S) € 2 agkag*k e d € N (B2)
KS,t(o‘v&k)

By assuming s # —t, the term k,.(c, &; k) can be written as follows

an
Kst(o, & k) = OERDERF

(Y (-
(5

= () e {35 patgam

s+t 2
exp{ (£+s+t

S+t<§+s—2|—ta)<£*_s—2|—t

where the first equality follows from simple algebra, the
second equality from the definition of Laguerre polyno-
mials, the third equality from simple algebra, and the
last equality by applying the definition of Laguerre poly-
nomials with respect to a. Equation (@ then follows
by applying . in and applying the definition of
s-ordered quasi- probab1hty distribution. Equation
follows immediately by noting that wx_;:(o,&k) =

(=1)*|af® exp{ag” — a*¢}.

Appendix C: Proof of Theorem

Recall that, for every Fock state |n) with n € N

(ANF|n) = ("Zk) In+k)  forkeN (Cl)
and

w 0 for k >n 09

(A)"|n) = (n' |n — k) otherwise. (G2)

Applying or for the state Eﬂ(k) into the left side of
(E[), together with (C2]) or (C1), gives the desired result.

Appendix D: Proof of Theorem

Consider now a given Gaussian state = with @i # 0.
The s—OIEg)ered characteristic function associated with the
state Eﬂ is obtained by applying in 7 together

2
a) (g* - s+ta*)}eXp{ili|t}
o)) e {5 (¢ ) (€ - o
o+ (0= e ) e (o4 S (o0 - S b {200
S

2 2 *
exp{ =l +a¢

“)}ew {255}

k)

a*g}e {

(B3)

[
with (26a]) to obtain

—1)" Lars+t N,

X%k)(g,s): (N(’“)) eXp{QgT( . I)g}
9%k

* Dok dak

exp{ - %STXAté + aTé}
(D1)

where o = ZX[L =-XZpu.

Equatlon is obtamed by applying (22)) and -
in . Equatlon is obtained by 1mp051ng the
normalizatlon condltlon Xﬂ )(O, s) =1 in (24a), together
with (25D)).

The s-ordered quasi- probablhty distribution, for s #
—t, can be derived by applying (17) in @ together with

- to obtain

1 2
X exp{2 {dT(?I)a +/LTC /,L}}

o I ren Ty -1
Xmexp —501 XBt’Sa‘f'IJJ XCS [ 2PN
(D2)
Equation (24b)), for s ;é —t, is obtained by apply-

ing .) and ) in 1 2)), together with ( - Equa—
tion ([24b)), for s = —t, is obtained by applying in
@ together with .
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Appendix E: Proof of Corollary

This proof requires the following corollaries of Theo-
rem [l

Corollary 4. Under the assumption of Theorem [] and
if A, is invertible, then (25b)) becomes

AP = (1) A (AE+ B —3A) (B

Bi=ZCljx. (E2)

Corollary 5. Under the assumption of Theorem [ and
if B, s is invertible, then (25c|) becomes

5+ t\2k - 1.
( 9 ) t%?c,k:(Bt,s(a - 'Yt,s); _§Bt,s)
(k _
Bﬂ,s(z)_ for s # —t
|| ?* for s = —t
(E3)
where
. s+t o 4.
Vs = C,tlu. (E4)

Consider now a coherent state, the augmented covari-
ance matrix Cj is given by applying with r = 0 in
, which gives

- ~1-—s
C, = (n—% . )I (E5)
for which the matrix A, defined in (26a)) is found to be

lit)I. (E6)

Atz(ﬁ+- 5

From ([E5)), the matrix C’S_l is easily found to be

- 2
|
2n+1—s

Since A, is invertible, by applying and into
we obtain
14t 14t *
(E8)
The vector B, is obtained by applying (E7)) with s = —¢
in to obtain

ﬁt::(ﬁﬁ-l_%t>_l[ “*]. (E9)

(E7)

2 —p

Equation (38) is obtained by applying (E9) in (E8). By
applying (E7) in (26b]), the matrix B, , is found to be

. 4(n+ 131)

t,s —

5 (E10)
5 ' (s+t)2n+1—s

Since B, is invertible, by applying (23) and (E10)) in
(E3) we obtain

@+¢xn+kqu
1,s

B = (—1)Fp!
= (=1 2n+1—s
4(n + 1£1)

L 2 —_
x k<(3+tx2n4-1—sﬂa T,

2) (E11)

where v s is the complex number associated with the
augmented vector s, obtained by applying (E7) in
[E4), ie.,

— s+t
R T

Equation follows by applying (E12)) in (E11)).

(E12)
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