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Soft Information-Based Localization
for 5G Networks and Beyond
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Abstract— Accurate location information is crucial for a vari-
ety of new verticals and use cases enabled by 5th generation
(5G) wireless networks. While existing localization techniques
for cellular networks are continuously evolving in the stan-
dardization process, the stringent key performance indicator
requirements defined by the 3rd Generation Partnership Project
(3GPP) have not been met yet. This paper first provides an
in-depth review of the standardized reference signals and time/
angle-based measurements that can be used for localization of
user equipments in current 5G networks. Then, the paper details
the development of a soft information (SI)-based approach that
significantly improves localization accuracy for 5G and beyond
5G networks. Results are obtained in full conformity with 3GPP
standards in two standardized scenarios, namely urban microcell
and indoor open office, using time/angle-based measurements.
Results show that the proposed SI-based localization methods
significantly outperform existing techniques, especially when
harsh propagation conditions and higher (millimeter Waves)
frequencies are considered, paving the way to new services and
performance enhancements in 5G and beyond wireless networks.

Index Terms— Localization, 5G, 3GPP, machine learning, wire-
less networks.

I. INTRODUCTION

LOCATION AWARENESS [1], [2], [3], [4], [5], [6], [7],
[8] is critical for many verticals and use cases (UCs)

enabled by 5th generation (5G) networks and beyond 5G net-
works, including autonomy [9], [10], [11], [12], [13], crowd-
sensing [14], [15], [16], [17], [18], smart environments [19],
[20], [21], [22], [23], and the Internet-of-Things [24], [25],
[26], [27], [28]. Moreover, the location information of user
equipments (UEs) is a valuable asset that allows service
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TABLE I
KPI REQUIREMENTS FOR THE DIFFERENT POSITIONING SERVICE

LEVELS: (A) AND (R) DENOTE ABSOLUTE AND RELATIVE
LOCALIZATION ACCURACY, RESPECTIVELY

providers to perform smart network management based on
the users’ position [29], [30], [31], [32], [33], [34]. The 3rd
Generation Partnership Project (3GPP) standardization body
has defined UCs in which networks rely on location awareness
for different verticals; each UC defines different requirements
on key performance indicators (KPIs) including horizontal and
vertical localization accuracy, service availability, and maxi-
mum latency [35], [36]. Such requirements are grouped, by the
3GPP, in seven positioning service levels as reported in Tab. I.
However, providing localization functionalities that satisfy the
KPI requirements is challenging, especially in harsh wireless
environments.

Current long-term evolution and 5G networks rely on
proximity information, fingerprints, or single-value estimates
(SVEs) such as time and power estimates for localization
[37], [38], [39]. For example in enhanced-cell ID methods,
a coarse estimate of the UE position is determined based on
the ID of the base station serving the UE, and on position-
related time-based or power-based metrics extracted from the
received signals. In the case of downlink time-difference-
of-arrival (DL-TDOA), the differences between the arrival
times (received at the UE) of a reference signal (RS) (trans-
mitted from different base stations) are used for inferring
the UE’s position. In Release 16 (Rel-16) and Rel-17, the
3GPP standardization activities related to 5G Radio Access
Network positioning have been focused on leveraging new
types of time measurements and of angle information enabled
by features of 5G networks such as large antenna arrays
in SVE-based localization methods [38], [39]. Currently, a
study item in 3GPP is evaluating the potential benefits of
artificial intelligence and machine learning for 5G air interface
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within the scope of the upcoming Rel-18 [40], including for
enhancing localization accuracy.

Existing SVE-based localization techniques have not yet
managed to fulfill the stringent KPI requirements defined by
3GPP, especially in harsh wireless propagation environments
due to multipath propagation and non-line-of-sight (NLOS)
conditions [41], [42]. Time-based methods relying on ded-
icated RSs such as DL-TDOA based on the positioning
reference signal (PRS) and uplink time-difference-of-arrival
(UL-TDOA) based on the sounding reference signal (SRS)
can provide higher localization accuracy than proximity-
based counterparts. The design of localization techniques has
been mainly focused on DL-TDOA measurements obtained
from 5G networks operating in frequency range 1 (FR1),
i.e., employing carrier frequencies below 7.125 GHz [43].
However, other types of time-based measurements such as
UL-TDOA based on SRS and multi-cell round trip time
(MRTT) measurements based on both PRS and SRS can be
exploited to perform localization [44]. Considering wireless
networks operating in frequency range 2 (FR2), i.e., employ-
ing millimiter Waves with carrier frequency in the range
from 24.25 GHz to 52.6 GHz [43], angle-based measurements
enabled by the use of multiple antennas such as angle-of-
departure (AOD) measurements can also be exploited indi-
vidually or together with time-based measurements [44], [45].

Recently, a new localization approach based on soft infor-
mation (SI) [46], [47], [48], [49], [50] has been proposed as an
alternative to SVE-based localization (see Fig. 1 for a pictorial
depiction of SI-based localization). SI-based localization relies
on probabilistic models learned from the environment via
machine learning techniques to characterize the relationship
between the measurements and UE locations. In [48], the
advantages of SI-based localization for 5G networks and
beyond have been demonstrated and the performance gains
provided by the SI-based approach have been quantified in
specific scenarios and network settings considering time mea-
surements (i.e., DL-TDOA measurements). Furthermore, the
benefits of fusing radio access technology (RAT)-dependent
measurements (i.e., measurements obtained using 5G technol-
ogy) and RAT-independent measurements (i.e., measurements
obtained using non-3GPP technologies such as Wi-Fi) through
the SI framework were investigated in [49].

SI-based localization represents a good candidate for pro-
viding accurate localization in 5G networks and beyond, owing
to its improved accuracy compared to SVE-based approaches
and to the possibility of fusing heterogeneous measurements
in a seamless way. The fundamental questions related to
SI-based localization in 5G and beyond networks are:
• how to design SI-based techniques capable of exploiting

all types of RAT-dependent measurements provided by
5G networks at different frequency ranges; and

• which advantages can SI-based localization provide by
leveraging new 5G measurements and by fusing different
RAT-dependent measurements?

The answers to these questions will enhance the localization
capabilities of 5G and beyond networks, enabling new verticals
relying on accurate location information of UEs. The goal
of this work is to develop SI-based localization methods and

Fig. 1. Pictorial view of location awareness provided by SI-based localiza-
tion: blue dots represent the UEs, red annuluses represent the next generation
NodeBs (gNBs), and the yellow-red contour lines represent the SI associated
with the UE positions. Lighter colors are associated with higher values of
SI, i.e., lower uncertainty regarding the UE positions.

demonstrate that SI-based approach is able to leverage all types
of 5G measurements and achieves tangible improvements in
localization accuracy compared to existing approaches. We
advocate the use of SI-based approach for localization in 5G
and beyond networks, leveraging generative models learned
from the wireless environment via machine learning tech-
niques. Such approach can easily be integrated into the already
standardized 5G localization procedures and architecture.

This paper develops SI-based localization methods that can
be easily integrated into the network architecture for 5G
and beyond. The localization performance is assessed in two
standardized scenarios, namely indoor open office (IOO) and
urban microcell (UMi), via a simulator that we developed in
full conformity with 3GPP technical reports [51]. The key
contributions of this paper can be summarized as follows:

• review of PRS, SRS, and time/angle-based measurements
according to 3GPP specifications, as well as a discussion
of existing localization algorithms;

• design of SI-based localization methods that can
fuse heterogeneous measurements, including DL-TDOA,
UL-TDOA, MRTT, and AOD measurements;

• quantification of the performance gain provided by
SI-based localization methods compared to existing tech-
niques in 3GPP IOO and UMi scenarios; and

• evaluation of the impact of generative model complexity
and training set size on the SI-based localization accuracy.

The remainder of the paper is organized as follows: Sec. II
gives a review of the 5G RSs involved in the localization
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process; Sec. III describes the localization process based on
RAT-dependent measurements; Sec. IV introduces the notion
of SI-based localization for 5G and beyond networks; Sec. V
presents the performance of 5G localization based on SI and
compares it with existing 5G localization based on SVEs; and
Sec. VI gives our conclusion.

Notation: Random variables (RVs) are displayed in sans
serif, upright fonts; their realizations in serif, italic fonts. Vec-
tors and matrices are denoted by bold lowercase and uppercase
letters, respectively. For example, a RV and its realization are
denoted by x and x; a random vector and its realization are
denoted by x and x; a random matrix and its realization are
denoted by X and X , respectively. Random sets and their
realizations are denoted by up-right sans serif and calligraphic
font, respectively. For example, a random set and its realization
are denoted by X and X , respectively. The function fx(x) and,
for brevity when possible, f(x) denote the probability density
function (PDF) of a vector of continuous RVs x; fx|y(x|y)
and, for brevity when possible, f(x|y) denote the PDF of
x conditional on y = y; φ(x; µ, Σ) denotes the PDF of
a Gaussian RV x with mean µ and covariance matrix Σ;
operator E {·} denotes the expectation of the argument. For
a matrix A and a vector a, the transpose is respectively
denoted by AT and aT. Operators (·)∗ and ||·||2 denote the
complex conjugate operator and the 2-norm, respectively. The
imaginary unit is denoted by ȷ.

II. 5G MEASUREMENTS FOR LOCALIZATION

5G networks support six different RAT-dependent mea-
surements and their combinations for providing localization
functionality [52]. This work focuses on time-based methods
(i.e., DL-TDOA, UL-TDOA, and MRTT measurements) and
angle-based methods (i.e., AOD measurement). In particular,
the PRS and SRS involved in the localization process are
described below.1 Hereafter, 5G RSs and low complexity
algorithms for obtaining measurements according to the 5G
standardized architecture are presented.2

A. Positioning Reference Signal

The PRS was introduced in 3GPP Rel-9 [53] and it has been
updated for 5G wireless networks by expanding its flexibility
in terms of frequency and time slot allocation. Similar to
long-term evolution, PRS for 5G uses slots where no data
are transmitted. The sequence used to generate the PRS is a
31-bit long Gold sequence c[m], where the seed cPRS

init depends
on the physical cell identity (PCI) and on the values assumed
in the set {0, 1, . . . , 4095} [54].

The binary sequence c[m] is then modulated via quadrature
phase-shift keying-modulation as

s[m] =
1√
2

(
1− 2c[m]

)
+ ȷ

1√
2

(
1− 2c[m + 1]

)
. (1)

1The notation used throughout Sec. II is in conformity with 3GPP technical
specifications and reports.

2Algorithms for determining time and angle estimates based on 5G RSs
are not standardized by 3GPP and their implementation is left to the network
vendor.

The symbols s[m] are mapped to the (l, k) resource element
(RE), i.e., the k-th subcarrier (SC) of the l-th symbol, over
a specific time-frequency pattern as described in detail in
[54]. In the frequency domain, the PRS is arranged in a
comb structure, i.e., only one SC out of KPRS

comb SCs is
effectively used for transmitting the symbols s[m], while the
other (KPRS

comb− 1) SCs are padded with zeros. This particular
frequency structure allows for interference suppression in case
of multiple PRS transmissions from different gNBs. The comb
size KPRS

comb is configurable within the values {2, 4, 6, 12}.
In the time domain, the PRS occupies LPRS ∈ {2, 4, 6, 12}
consecutive symbols within a slot and the starting PRS symbol
within a slot denoted by lPRS

start, can be configured.
Given a specific numerology µ ∈ {0, 1, 2, 3, 4}, i.e., a spe-

cific SC spacing determined by ∆f = 2µ × 15 KHz, the (l, k)
RE for a PRS transmission can be written as

a
(µ)
k,l =

{
βPRS s[m] if m is mapped to k

0 otherwise
(2)

for k = 0, 1, . . . , NPRS
FFT−1 and l = lPRS

start, l
PRS
start+1, . . . , lPRS

start+
LPRS − 1, where βPRS is a scale coefficient. The detailed
procedure used to map the modulated symbols to the SCs can
be found in [54]. The quantity NPRS

FFT represents the number
of SCs allocated for PRS transmission and is defined as

NPRS
FFT = NRB

SC NPRS
RB (3)

where NRB
SC = 12 is the number of SC per resource block (RB)

and NPRS
RB is the number of RBs allocated for the PRS. Given

NPRS
FFT , the digital orthogonal frequency division multiplexing

modulated signal for the l-th symbol is obtained via inverse
fast Fourier transform as

sl[n] =
1√

NPRS
FFT

NPRS
FFT−1∑
k=0

ak,l exp
{

2π
nk

NPRS
FFT

}
(4)

where the superscript (µ) in (2) is omitted in (4) for notation
simplicity. The digital signal sl[n] is then converted to a
continuous-time signal and modulated to radio frequency.

In order to facilitate the PRS reception procedure, the time
slots allocated for PRS transmission are organized into three
different interrelated logical entities: (i) positioning frequency
layers; (ii) PRS resource sets; and (iii) PRS resources. Each
entity determines a subset of parameters defining the PRS and
the three entities follows a hierarchic relationship as follows:
different PRS resources are grouped in a PRS resource set,
and PRS resource sets are grouped in a positioning frequency
layer. In particular, the PRS time signal is transmitted when
the quantity z(nf , n

µ
s,f), which depends on the system frame

number nf and slot number nµ
s,f , fulfills the condition(

z(nf , n
µ
s,f) mod 2µTPRS

per

)
∈

{
nTPRS

gap

}TPRS
rep −1

n=0
(5)

where TPRS
per ∈ {4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 160, 320, 640,

1280, 2560, 5120, 10240} is the PRS transmission periodicity,
TPRS

gap ∈ {1, 2, 4, 8, 16, 32} is the time gap in slots between
two instances of PRS resource belonging to the same set,
TPRS

rep ∈ {1, 2, 4, 6, 8, 16, 32} is the number of repeated PRS
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Fig. 2. Example of PRS occasions considering the numerology µ = 0, i.e., where one slot occupies an entire subframe [54]. In the example, TPRS
offset = 10,

TPRS
offset,res = 2, TPRS

gap = 1, and TPRS
rep = 4. For the time-frequency allocation of the PRS in one RB, the parameters in the example are: KPRS

comb = 6,
lPRS
start = 2, and LPRS = 12.

slots in a single instance of PRS resource set. The quantity
z(nf , n

µ
s,f) is defined as

z(nf , n
µ
s,f) = N frame,µ

slot nf + nµ
s,f − TPRS

offset − TPRS
offset,res (6)

where N frame,µ
slot is the number of slots within a radio frame,

TPRS
offset ∈ {0, 1, . . . , TPRS

per − 1} is the slot offset relative to
the system frame number zero (i.e., nf = 0), and TPRS

offset,res is
the slot offset of the PRS resource with respect to the offset
TPRS

offset.
3 From [55], a PRS resource is defined by: a unique

identifier for resource within the PRS resource set; the slot
offset of the PRS resource with respect to the slot offset of
the PRS resource set; the RB offset with respect to the index
of SC zero in the allocated resource grid; the seed used to
generate the PRS sequence; the index lPRS

start corresponding to
the first PRS symbols in the slot; a list of other resources
in the same PRS resource set; and an indicator of other RSs
experiencing or not similar channel conditions as the PRS.
Each instantiation of a PRS resource is referred to as a PRS
occasion. A PRS resource set is defined by a resource set ID,
the time allocation parameters TPRS

per , TPRS
rep , TPRS

gap (configured
only if TPRS

rep ̸= 1), a bit map representing a muting pattern
for the transmission, TPRS

offset, TPRS
offset,res, the comb size KPRS

comb,
the number of symbols LPRS, and the bandwidth allocated
for the PRS defined in terms of RB, NPRS

RB , starting from a
minimum of 24 to a maximum of 272, with a granularity of 4.
The positioning frequency layer defines the SC spacing of all
the PRS resource sets belonging to the layer, the cyclic prefix

3Additional conditions and constraints on the transmission of the PRS
resource set and resource are present if muting patterns are provided [55].

used for the transmission, and the absolute frequency point for
the resource grid allocated for the PRS transmission. Fig. 2
depicts multiple 5G radio frames with two PRS occasions. The
time-frequency grid of the PRS signal is also depicted for a
particular set of parameters.

B. Sounding Reference Signal

The SRS is an uplink RS used for both communication and
localization purposes. For communication purposes, the SRS
is used to perform uplink channel sounding, which includes
channel estimation for precoding and timing control. For
localization purposes, the SRS is used to obtain UL-TDOA
and, in conjunction with the PRS, MRTT measurements. SRS
for communication and SRS for localization share similar
features with different configurations.

The SRS and PRS share a similar time-frequency struc-
ture, with SRS exhibiting a comb pattern in the frequency
domain, governed by the comb size parameter KSRS

comb. SRS is
transmitted in LSRS consecutive symbols within an allocated
time slot, starting from the symbol indexed by lSRS

start. The
values allowed for the parameters are KSRS

comb ∈ {2, 4, 8}
and LSRS ∈ {1, 2, 4, 8, 12}. In contrast to the PRS, the SRS
uses a complex-valued Zadoff–Cho sequence czc[m] as base
signal in order to ensure a low level of peak-to-average-power
ratio [54]. The specific sequence employed depends on the
values of KSRS

comb and LSRS. Similarly to (2), the RE for a
SRS transmission can be written as

ak,l =

{
βSRS czc[m] if m is mapped to k

0 otherwise
(7)
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for l = lSRS
start, l

SRS
start + 1, . . . , lSRS

start + LSRS − 1 and k =
0, 1, . . . , NSRS

FFT, where βSRS is a scale factor. The detailed
procedure used to determine czc[m], as well as how the
sequence is mapped to the SCs, can be found in [54]. Given
ak,l, the orthogonal frequency division multiplexing signal is
obtained as in (4), with NSRS

FFT = NRB
SC NSRS

RB , where NSRS
RB is

the number of RBs for SRS transmission.
Similar to PRS, SRS transmissions for localization are

organized in time as SRS resource, i.e., collections of multiple
SRS slots, and multiple SRS resources are collected in a
SRS resource set. The transmission of an SRS resource can
be configured to be periodic, but differently from the PRS,
resource repetition within an SRS occasion is not supported.
In the time domain, a SRS resource may be transmitted when
the following condition is fulfilled(

N frame,µ
slot nf + nµ

s,f − T SRS
offset

)
mod T SRS

per = 0 (8)

where T SRS
offset is the SRS resource offset and T SRS

per the SRS
periodicity in time slots. SRS slot offset and periodicity,
as well as all other parameters, are configured by the network
via the radio resource control protocol as detailed in [56].

C. TOA Estimation

All time-based measurements carried out by the 5G net-
work for localization purposes, i.e., time-difference-of-arrival
(TDOA) (both DL-TDOA and UL-TDOA) and MRTT, are
obtained by estimating the time-of-arrival (TOA) of specific
RSs. For DL-TDOA measurements, the UE estimates the TOA
of multiple PRS transmissions from neighbor gNBs, then the
TOA relative to a reference gNB is subtracted from the other
estimates. UL-TDOA measurements are obtained in a similar
way, but in this case the TOA estimation is carried out at
the gNB-side based on the SRS transmitted by the UE to
be localized. On the other hand, MRTT measurements are
obtained based on the TOA estimates from PRS and SRS.

In order to obtain the TOA, the UE or gNB estimates the
delay of the first path of the channel impulse response based on
the received RS r(t). For example, this can be accomplished
by evaluating the cross-correlation between the transmitted and
received RS. Let r[n] = r(nTs) denote a realization of the
sampled version of the received signal r(t) with sampling time
Ts.4 The cross-correlation Rr,s

[
n
]

is defined as

Rr,s

[
n
]

=
Nsamp−1∑

j=0

r[j]s∗[j − n] (9)

for n = 0, 1, . . . , Nsamp, where s[n] = s(nTs) and Nsamp

the number of RS samples. In line-of-sight (LOS) condi-
tion, the delay of the first channel path can reliably be
estimated by searching for the strongest peak in the cross-
correlation. However, in NLOS condition, the first channel
path (LOS component of the received signal) is usually weak
and the strongest peak in cross-correlation may represent
late replicas of the transmitted signal, reaching the receiver
via longer propagation paths, thus introducing a bias in the

4The sampling time Ts is inversely proportional to the RS bandwidth.

TOA estimate [57], [58], [59]. In order to mitigate this
detrimental effect, iterative methods aimed at estimating the
channel impulse response and consequently the first path, can
be employed [60]. In each iteration, the strongest peak in
Rr,s

[
n
]

is identified and then its contribution is removed.

Let R
(i)
r,s

[
n
]

denote the cross-correlation at the i-th iteration.
The discrete cross-correlation at iteration i + 1 is obtained
as

R(i+1)
r,s

[
n
]

= R(i)
r,s

[
n
]
−R(i)

r,s

[
n(i)

]
Rs,s

[
n− n(i)

]
(10)

where n(i) = argmaxn

{
R

(i)
r,s

[
n
]}

and Rs,s

[
n
]

is the normal-
ized auto-correlation of the transmitted signal s(t). At the
iteration 0, the algorithm is initialized such that R

(0)
r,s

[
n
]

=
Rr,s

[
n
]
. The algorithm stops after NI iterations or when a

specific criterion is met, such as the peak-to-average ratio
falling below a certain threshold. Among the identified NI +
1 delays, {n(0), n(1), . . . , n(NI)}, the minimum is taken as
estimated sample delay, i.e.,

n̂ = min
{

n(0), n(1), . . . , n(NI)
}

(11)

and the estimated TOA is then obtained as τ̂ = n̂Ts.
To increase the accuracy of the TOA estimates, cross-
correlations obtained from different RS occasions can be
coherently accumulated for increasing the signal-to-noise ratio
(SNR).

D. AOD Estimation

In FR2, angle-based measurements are obtained by relying
on the high number of antenna elements available at the
gNB side [44], [45]. In particular, multiple PRS resources
are transmitted by the gNB applying different steering vectors
to the transmitting antenna array. The AOD is estimated by
evaluating the received power levels at the UE side. The
angle corresponding to the steering vector that determines the
highest received power or SNR at the UE side is considered
as the AOD estimate [45]. Consider azimuth AOD estimation
and a single gNB serving an angular sector of A degrees.
Denote with NA the number of steering vectors related to
different azimuth angles α(n) = nαRES where n ∈ NA =
{1, 2, . . . , NA} and αRES = A

NA
represents the angular reso-

lution. Given the transmission of NA PRS resources, where the
n-th PRS resource is transmitted employing the n-th steering
vector, the UE evaluates the SNR ρ

(n)
A corresponding to the

n-th PRS resource. Considering a realization of the SNR
values, a first coarse AOD estimate is given by ᾰ = α(n̂)

where

n̂ = argmax
n∈NA

ρ
(n)
A . (12)

The estimate ᾰ can be further refined considering the set
of pairs {(α(n), ρ

(n)
A )}n∈NA [45]. For example, denote with

ρ
(n̂−1)
A and ρ

(n̂+1)
A the SNRs associated to the angles α(n̂−1)

and α(n̂+1), respectively. A refined AOD estimate α̂ can be
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obtained as weighted average of adjacent angles5

α̂ = −
ρ
(n̂−1)
A

ρ
(n̂)
A

αRES + ᾰ +
ρ
(n̂+1)
A

ρ
(n̂)
A

αRES . (13)

The number of steering vectors used for PRS transmission
depends on the specific carrier frequency considered and the
number of available antenna elements [38].

III. 5G LOCATION ESTIMATION

Existing 5G localization methods rely on SVEs using
measurements described in Sec. II, namely TDOA, MRTT,
and AOD. In general, SVE-based localization methods divide
the localization process into two stages. In the first stage,
a measurement vector yi is defined as a collection of mea-
surements obtained by the exchange with the i-th gNB, where
i ∈ Nbs = {1, 2, . . . , Nbs}. For example, yi can include
the entire set of waveform samples, time-based, angle-based,
and power-based metrics, or any combination of them. These
measurements are related to a positional feature θi(p) which
is a function of the UE position p ∈ R2 and the position pBS

i

of the i-th gNB. In the first stage of SVE-based localization
methods, the measurements {yi}i∈Nbs are processed in order
to obtain SVEs of the positional features, i.e., {θ̂i}i∈Nbs , such

as distance or angle estimates. In the second stage, {θ̂i}i∈Nbs

are used as input to the localization algorithm to obtain an
estimate of the UE position p̂.

In cellular localization, weighted least squares (WLS) is
widely adopted for obtaining an estimate of the UE position
p̂ given a particular set of SVEs {θ̂i}i∈Nbs [61], [62], [63].
In particular, WLS assumes the following measurement model

θ̂ = θ(p) + w (14)

where

θ̂ =
[
θ̂1, θ̂2, . . . , θ̂Nbs

]T

(15a)

θ(p) =
[
θ1(p), θ2(p), . . . , θNbs(p)

]T

(15b)

w =
[
w1, w2, . . . ,wNbs

]T

(15c)

with w denoting a zero-mean Gaussian noise vector with
covariance matrix Σ = E

{
wwT

}
. Given a realization of the

SVE vector θ̂, the UE estimated position is obtained as

p̂ = argmin
p̃

(
θ̂ − θ(p̃)

)T
Σ−1

(
θ̂ − θ(p̃)

)
. (16)

Depending on the functional form of θi(p), a solution to (16)
can be obtained either in closed form, employing gradient-free
optimization algorithms such as grid search, random search,
or particle swarm optimization [64], or employing gradient-
based optimization algorithms using a simplified cost function
such as Levenberg–Marquardt algorithm [61].

WLS approach can be modified to exploit heterogeneous
measurements [65], [66]. In particular, consider NF different

5The weighted average can be expanded to include other angles and power
measurements in addition to the adjacent ones.

SVEs θ̂
(j)
i with i ∈ Nbs and j ∈ NF = {1, 2, . . . , NF}

obtained from NF types of sensors and define

θ̆
(j)

=
[
θ̂
(j)
1 , θ̂

(j)
2 , . . . , θ̂

(j)
Nbs

]
(17a)

θ̆(j)(p) =
[
θ
(j)
1 (p), θ(j)

2 (p), . . . , θ(j)
Nbs

(p)
]

(17b)

w̆(j) =
[
w

(j)
1 , w

(j)
2 , . . . ,w

(j)
Nbs

]
. (17c)

Then, the UE position estimate can be obtained via (16)
considering

θ̂ =
[
θ̆

(1)
, θ̆

(2)
, . . . , θ̆

(NF)
]T

(18a)

θ(p) =
[
θ̆(1)(p), θ̆(2)(p), . . . , θ̆(NF)(p)

]T

(18b)

w =
[
w̆(1), w̆(2), . . . , w̆(NF)

]T

. (18c)

1) TDOA Measurements: consider Nbs gNBs providing
TDOA measurements with respect to an additional gNB used
as reference gNB indexed by 0. Denote the TDOA measure-
ments obtained from the i-th neighbor gNB and the reference
gNB with

τ̂i,0 = τ̂i − τ̂0 (19)

where i ∈ Nbs, τ̂i is the TOA estimate relative to the i-th
gNB and τ̂0 is the TOA estimate relative to the reference
gNB obtained from the PRS or SRS for downlink or uplink
transmission, respectively. In this case, the vector elements in
(15a) and (15b) can be written as

θ̂i = c τ̂i,0

= d̂i,0 (20a)
θi(p) = di,0(p)

= di(p)− d0(p) (20b)

where di(p) =
∣∣∣∣p− pBS

i

∣∣∣∣
2
, d0(p) =

∣∣∣∣p− pBS
0

∣∣∣∣
2
, i ∈

Nbs, c is the signal propagation speed and pBS
0 denotes the

coordinates of the reference gNB.
2) MRTT Measurements: for MRTT-based localization,

the problem formulation is similar to what presented for
TDOA-based localization, with a few differences in the mea-
surement model. Given Nbs gNBs, the network estimates Nbs

round-trip time (RTT) measurements defined as6

τ̂i =
1
2
(τ̂PRS

i + τ̂SRS
i ) (21)

where τ̂PRS
i and τ̂SRS

i are the TOA estimates obtained from
the PRS and SRS, respectively. Then, the measurement model
in (15a) and (15b) is modified as

θ̂i = c τ̂i

= d̂i (22a)
θi(p) = di(p) (22b)

where i ∈ Nbs and di(p) is defined in (20).

6The processing delays of the RSs at the UE are neglected for simplicity.
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3) AOD Measurements: for AOD-based localization, mea-
surement model in (15a) and (15b) can be written as

θ̂i = α̂i (23a)
θi(p) = αi(p) (23b)

where i ∈ Nbs and αi(p) represents the azimuth angle
between the i-th gNB and the position p.

IV. SI FOR 5G AND BEYOND LOCALIZATION

SI has been proposed in [46] and is developed here to
overcome the limitations of SVE-based localization in 5G and
beyond networks. SI encapsulates all the positional informa-
tion of the UE associated with the sensing measurements and
the contextual data. In particular, the ensemble of positional
information associated with the measurements is referred to
as soft feature information (SFI). SFI provides a statistical
characterization of the relationship between the sensing mea-
surements and positional features. This is represented by a
measurement vector yi and a feature vector θi function of
the UE positional state such as UE position, velocity, and
bearing with i ∈ Nbs. On the other hand, the ensemble
of positional information associated with the contextual data
(e.g., digital map and mobility model) is referred to as soft
context information (SCI).7 SI-based localization leverages
both SFI and SCI to infer the UE position p̂.

In current 5G localization architecture, the measurement
vectors yi are not directly available to the network, and only
SVEs θ̂i are exploited for localization purposes [67], [68].
In order to leverage the strengths of SI-based localization
in 5G networks without requiring a complete redesign of
the localization protocols and architecture, we propose to
extract the SFI directly from the SVEs. In particular, at the
UE side, the SI-based localization process is identical to
the SVE-based process described in Sec. III. However, this
approach can easily be adapted to take into account new types
of measurements that might be available in future beyond
5G networks. In particular, SFI can be extracted from any
combination of SVEs and other possible metrics.

A. SFI Based on 5G Measurements

In this section, SFI is specialized taking into account the
measurement capabilities of current 5G networks. In particular,
the measurement vector is given by the SVE associated to a
RAT-dependent measurement (yi = θ̂i) and the feature vector
is given by the actual value of the feature associated to the
SVE (θi = θi). Thus, the SFI related to the feature θ and its
SVE θ̂ is

Lθ̂(θ) ∝ f
θ̂
(θ̂; θ) (24)

where the non-Bayesian formulation has been reported. In the
non-Bayesian formulation, the SFI is equivalent to the likeli-
hood function of θ. Compared to the single SVE θ̂, the SFI
Lθ̂(θ) provides richer information by accounting probabilisti-
cally for all possible values of θ, thus enabling soft-decision

7The exploitation of SCI and its generation is not directly related to the
specific technology employed. For brevity, we also dropped the dependency
of θi on the position p.

localization instead of hard-decision. Depending on the spe-
cific SVE, different types of SFI are obtained. For range-
related estimates, the corresponding SFI, namely soft range
information (SRI), can be written as Lθ̂(d). Similarly, the soft
angle information (SAI) Lθ̂(α) is defined for angle-related
measurements.

Considering that the measurements from different gNBs
given the UE location are statistically independent, the UE
position p can be estimated via the maximum likelihood (ML)
estimation exploiting the SFI as

p̂ = argmax
p̃

f({θ̂i}i∈Nbs ; p̃)

= argmax
p̃

∏
i∈Nbs

Lθ̂i
(θi) . (25)

As an example, consider DL-TDOA measurements obtained
from 5G PRS. In this setting, recalling (20), the SRI can
be written as Ld̂i,0

(di,0). Analogously from (22) and (23),
SRI and SAI related to MRTT and AOD measurements are
given by Ld̂i

(di) and Lα̂i(αi), respectively. Similarly to WLS
presented in Sec. III, (25) can be solved with gradient-free
optimization methods such as grid search and random search,
or particle swarm optimization [64].

The SI-based approach enables efficient data fusion. In par-
ticular, SVEs obtained from heterogeneous measurements can
be fused by multiplying their corresponding SFI, as long as
the measurements are conditionally independent given the UE
position. If such conditions are satisfied, given a set of SVEs
Θ̂i = {θ̂(j)

i }j∈NF related to the feature set Θi = {θ(j)
i }j∈NF ,

the SFI is given by

LΘ̂i
(Θi) =

∏
j∈NF

L
θ̂
(j)
i

(θ(j)
i ) . (26)

As an example, consider the fusion of DL-TDOA and AOD
measurements. In this setting, the resulting SFI obtained by
the fusion of SRI and SAI can be written as

LΘ̂i
(Θi) = Ld̂i,0

(di,0)Lα̂i(αi) . (27)

Fig. 3 depicts a pictorial representation of the SFI obtained
from the fusion of the SRI extracted from DL-TDOA mea-
surements (relative to the gNBs 1 and 2, considering the gNB
0 as reference) and the SAI extracted from AOD measurements
(relative to gNB 0). Intensity of SRI is shown with a red-
yellow colormap, while the intensity of SAI is shown with a
green colormap. The total SFI obtained as multiplication of the
SRI and SAI is shown with a blue colormap. Lighter colors
are associated to higher values of SFI.

B. SFI Learning

SFI can be determined using a Bayesian framework, and in
particular leveraging the joint probability distribution of θ̂ and
θ, referred to as generative model.8 In the absence of prior

8SFI can be leveraged to perform localization considering both a
non-Bayesian or a Bayesian formulation of the interference problem. However,
in order to learn the statistical relationship between the measurement vector
and feature vector, it is convenient to consider the feature vector as a random
quantity.
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Fig. 3. SRI based on DL-TDOA measurements obtained from gNBs 1 and 2,
considering the gNB 0 as reference (represented by red annolous), and SAI
based on AOD measurements obtained from gNB 0. Lighter colors correspond
to SFI higher values.

information on the feature θ, the SFI is determined by

Lθ̂(θ) ∝ f
θ̂,θ(θ̂, θ) . (28)

Thus, the task of determining the SFI is equivalent to the task
of determining the generative model relating the SVE with its
true value. In complex scenarios, this can be accomplished by
employing unsupervised machine learning techniques applied
to measurements and positional feature data acquired in the
scenario of interest. In particular, a two-phase algorithm is
used to estimate the generative model based on density estima-
tion techniques. The algorithm works as follows: i) an off-line
phase where a generative model estimate is obtained from the
SVEs and their true values; and ii) an on-line phase where
the generative model estimate is used to determine the SFI
associated with each new SVE.

In the following, a density estimation technique used for
determining the generative model is presented. Such density
estimation technique considers as generative model a Gaussian
mixture (GM) model [69]. For notational convenience, con-
sider the vector x = [θ̂, θ]

T
. In this case, the generative

model to be estimated is f(x) = f(θ̂, θ). Prior to the density
estimation process, it is beneficial to pre-process the data and
normalize the different variables via data-sphering [70]. Data
sphering is a linear transformation that maps the original data
into a set with mean zero and identity covariance matrix. Let
{x̃i,n(i)}

n(i)∈N (i)
t

be the set of unprocessed data, where

N (i)
t =

{
1, 2, . . . , N

(i)
t

}
(29)

and N
(i)
t is the number of training points relative to the

i-th gNB. For notation brevity, define xl = x̃i,n(i) where
l =: N

(i)
t (i − 1) + n(i) and l ∈ Nt = {1, 2, . . . , Nt} with

Nt =
∑

i∈Nbs
N

(i)
t . Then, the processed data after sphering

are given by

zl = Λ− 1
2 UT(xl − x̄) (30)

where x̄ is the sample mean of the unprocessed data, and
UΛUT is the spectral decomposition of the sample covariance
matrix of the unprocessed data {xl}l∈Nt .

9 Then, the estimated
density of the non-sphered data f̂x(x) can be obtained from
the estimated density f̂z(z) as follows

f̂x(x) =
∣∣∣det(Λ− 1

2 UT)
∣∣∣ f̂z(z)

=
∣∣∣det(Λ− 1

2 UT)
∣∣∣ f̂z(Λ− 1

2 UT(x− x̄)) . (31)

Assume that the sphered data {zl}l∈Nt are realizations of
independent, identically distributed random variables (RVs)
following a GM distribution given by

f̃(z;P) =
∑

k∈NG

πkφ(z; µk, Σk) (32)

where NG = {1, 2, . . . , NG}, NG is the number of Gaus-
sian components forming the mixture, and πk ∈ R+ with∑

k∈NG
πk = 1 represents the weight of the k-th Gaussian

component. The set of parameters P = {πk, µk, Σk}k∈NG

along with NG completely define the distribution. Therefore,
the problem of obtaining the estimate f̂(z) is equivalent to
the problem of determining the optimum set of parameters
P̂ which describe the sphered data {zl}l∈Nt , i.e., f̂(z) =
f̃(z; P̂). This problem can be solved by applying a ML
approach, and in particular, given the independent, identically
distributed assumption, the log-likelihood function can be
written as

Λ
(
{zl}l∈Nt ;P

)
= ln

{
f̃({zl}l∈Nt ;P)

}
=

∑
l∈Nt

ln

{ ∑
k∈NG

πiφ(zl; µk, Σk)

}
(33)

and the optimal set of parameters P̂ is obtained by maximizing
(33), i.e.,

P̂ = argmax
P

∑
l∈Nt

ln

{ ∑
k∈NG

πiφ(zl; µk, Σk)

}
(34)

Note that no closed-form solution can be obtained for (34).
Therefore, iterative algorithms are employed to determine
an approximate ML solution. The expectation-maximization
(EM) algorithm is typically used to solve (34) [69] which
consists of the following steps:

1) At the first iteration for n = 0, initialize the set parameter
P̂ [0] by performing clustering on the data {zl}l∈Nt , for
example via k-means algorithm [71], with the number
of clusters equal to the number NG of components in
the GM model. The parameters πk are calculated as the
fraction of data z

[0]
l assigned to the k-th cluster, while

µ
[0]
k and Σ

[0]
k are calculated as the sample mean and

9Λ is a diagonal matrix where the diagonal elements are given by the eigen-
values of the empirical covariance matrix corresponding to the eigenvectors
that are the columns of U .
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sample covariance of the data zl assigned to the k-th
cluster, respectively.

2) for n increasing, starting from the current values of the
parameters, calculate:

γ
[n]
k,l = π

[n]
k

φ(zl; µ
[n]
k , Σ

[n]
k )

f̃(zl; P̂ [n])
(35a)

Γ[n]
k =

∑
l∈Nt

γ
[n]
k,l . (35b)

3) Update the weights, mean vectors and covariance matri-
ces as follows

π
[n+1]
k =

Γ[n]
k

Nt
(36a)

µ
[n+1]
k =

1

Γ[n]
k

∑
l∈Nt

γ
[n]
k,lzl (36b)

Σ
[n+1]
k =

1

Γ[n]
k

∑
l∈Nt

γ
[n]
k,l (zl − µ

[n+1]
k )(zl − µ

[n+1]
k )

T
.

(36c)

4) Evaluate the log-likelihood function (33) with the new
parameters (36) and check for convergence of the log-
likelihood, i.e.,

Λ
(
{zl}l∈Nt ; P̂ [n+1]

)
⩽ Λ

(
{zl}l∈Nt ; P̂ [n]

)
+ ϵth (37)

where ϵth > 0 is a predefined threshold.10 If convergence
is not achieved, repeat from 2).

The EM algorithm is widely employed GM model fitting due
to its simplicity and flexibility. However, EM may converge
to a local maximum instead of a global maximum. Moreover,
the convergence rate strongly depends on the initialization
parameters. Multiple runs of EM can be performed with
different initialization parameters, and we keep the solution
with the highest log-likelihood value. In particular, the initial
centroids of the k-means algorithm can be selected randomly
for each run, thus determining different values of P̂ [0]. The
number of runs required to achieve a satisfactory fitting of the
GM depends on the data set considered.

Density estimation via the GM model produces a parsi-
monious generative model characterized by a small number
of parameters πk, µk, and Σk for k ∈ NG where the
only free parameter is the number of components in the GM
NG. However, generative models with a fixed number of
parameters may not be suitable for capturing complex relations
between the measurement and feature vectors. In this case,
cross-validation procedures can be employed to determine the
optimal or near-optimal value of NG for the performance
metric under consideration [72].

V. CASE STUDIES

This section presents the results on SI-based localization
in two 3GPP standardized scenarios. The results are obtained
using the SI-based algorithm presented in the previous section
and using a 5G localization simulator developed in conformity

10Recall that the log-likelihood function value increases at each iteration.

Fig. 4. Site spatial displacement (red annuluses) for the two scenarios under
consideration.

with 3GPP technical reports and technical specifications [38],
[44], [54], [55].

Among the different 5G scenarios considered in [38], we
provide results for both IOO and UMi scenarios. The IOO
scenario is characterized by a higher probability of LOS links,
while UMi scenario represents a harsher wireless propagation
environment, with higher delay spreads and probability of
NLOS links.11 In each scenario, different channel models,
number of sites, spatial displacement of the site, inter-site
distance, and number of sectors per site (i.e., number of gNBs
per site) are considered. Fig. 4 depicts the spatial deployment
of the sites and their relative sectors for the two scenarios.

In [38] different carrier frequency and numerologies for 5G
localization are specified. In particular, for FR1 the carrier
frequencies of 2 GHz and 4 GHz, with numerologies µ = 0 and
µ = 1 (15 kHz and 30 kHz of SC spacing) are considered,
respectively. For FR2 the carrier frequency of 30 GHz with
a numerology µ = 3 (120 kHz of SC spacing) is considered
as representative. Different antenna arrays for UEs and gNB,
receiver noise figure, and transmitted power are specified
for each scenario [38], [43], [73]. For IOO, the simulator
is capable of simulating a 5G localization system based on

11For a UE deployed uniformly at random in the considered environment,
the probability of having at least three gNBs in LOS condition is approxi-
mately 99% and 15% for IOO and UMi scenarios, respectively.
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TABLE II
COMMON SIMULATION PARAMETERS FOR THE TWO SCENARIOS

UNDER CONSIDERATION

DL-TDOA, UL-TDOA and MRTT measurements obtained by
exploiting PRS and SRS in both FR1 and FR2. In addition,
AOD measurements are considered in the case of FR2. Models
and algorithms for both TOA estimation and AOD estimation
are as described in Sec. III. Both PRS and SRS are fully
compliant with the specifications contained in [54] and [55]
including the allocation in the frequency domain (i.e., comb
structure), the number of RBs, the number of symbols per
occasion, and the periodicity of occasions as described in
Sec. II. Results in terms of the empirical cumulative distri-
bution function (ECDF) P̃ (eth) for the horizontal localization
error for existing 5G localization solutions based on SVE and
for SI-based localization developed are presented in the IOO
and UMi scenarios. In addition, the fusion of DL-TDOA and
AOD measurements via both approaches are reported.

The channel is compliant with [51] and it is simulated
using the Quadriga channel simulator [74], which includes
spatially correlated large scale fading parameters. The gNBs
antenna array configurations are taken as in [75], and perfect
synchronization and ideal muting (i.e., no interference from
neighbour gNBs) are considered for the simulations [38].
Recalling the quantities defined in Sec. II, both PRS and SRS
have a comb size of 4 SCs, and each estimate is obtained using
3 RS occasions composed by 4 symbols. The RS occupies
272 RBs; it exhibits a bandwidth of 50 MHz and 100 MHz for
the carrier frequency of 2 GHz and 4 GHz, respectively; and it
exhibits a bandwidth of 400 MHz for the carrier frequency of
30 GHz. Tab. II summarizes the major simulation parameters
common to the two scenarios, while Tab. III reports the
simulation parameters specific for each scenario. The gNBs
which perform TDOA, RTT, and AOD measurements are
selected based on the SNR of the RSs. In particular, for
TDOA measurements, the reference gNB is selected as the
one with the highest RS SNR, while all gNBs that exhibit a
RS SNR greater than −13 dB provides time- or angle-based
measurements [76]. For time-based measurements, a vertical
uniform linear array composed of 4 antenna elements per
polarization is employed at the gNB side to transmit and
receive the RSs [75]. Each antenna element has a maximum

TABLE III
SCENARIO-SPECIFIC SIMULATION PARAMETERS

ACCORDING TO 3GPP SPECIFICATIONS

directional gain of 8 dBi and a half-power beamwidth of
approximately 65◦ [38], [73]. TOA of the RSs is inferred
using the iterative algorithm presented in Sec. II-C. TDOA
and MRTT measurements are as presented in Sec. III-1 and
Sec. III-2, respectively. AOD measurements based on PRS are
obtained using an uniform rectangular array of 4× 4 antenna
elements per polarization. The number of employed steering
vectors is NA = 10 which determines an angular resolution
of αRES = 12◦ considering an angular sector of A = 120◦.
AOD estimation is performed using the algorithm as described
in Sec. II-D and as per the measurement model presented in
Sec. III-3.

For each combination of scenario and carrier frequency,
500 different instantiations of the wireless channel are sim-
ulated. Ten UEs are randomly placed in the environment
following a bidimensional uniform distribution and are local-
ized in each instantiation. Due to the spatial correlation of
the large-scale and small-scale fading coefficients, each UE
experiences a different wireless channel.12 Performance for
both SVE-based localization and SI-based localization are
evaluated via a k-fold cross-validation technique with k =
10 [72]. Specifically, in the training phase (i.e., off-line phase)
a subset of measurements is used for inferring: (i) the value of
NI in (11) which determines the lowest average ranging error
for time-based measurements; (ii) the covariance matrix Σ for
the WLS problem in (16); and (iii) the generative model used
by the SI-based approach in (25). Then, the measurements not
used in the off-line phase are used in the validation phase (i.e.,
on-line phase) to assess the localization performance of both
SVE-based and SI-based approaches. A GM model with NG =
3 components is assumed as generative model for the SFI
considering a threshold ϵth = 10−9 in (37) [48]. For each type
of measurement, five independent runs of the EM algorithm
have been carried out considering randomly chosen centroids
for the initialization of the k-means algorithm. The generative
model associated with the highest log-likelihood value is used
to perform SI-based localization. Each independent run of the
EM algorithm uses 25000 measurements to fit the GM model.

12The number of measurements used to localize each UE varies from
instantiation to instantiation and depends on the number of links that satisfy
the condition on the RS SNR.
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TABLE IV
ACCURACY OF DISTANCE ESTIMATE OBTAINED VIA TOA ESTIMATIONS

AND ACCURACY OF AOD ESTIMATION

The optimization in (16) and (25) is carried out via particle
swarm optimization [64].13

In the following subsections, performance results for various
scenarios and simulation settings are presented: (a) UMi
Type I; (b) UMi Type II; (c) IOO Type I; (d) IOO Type II;
and (e) IOO Type III. In Tab. II, the definition of Type I,
Type II, and Type III simulation settings are reported. In
Tab. IV accuracy of single-value estimation of the distances
obtained from TOA measurements and angles obtained from
AOD measurements is presented.14 In the performance plots
shown in Figs. 5–10, the dash-dotted lines represent the ECDF
of SVE-based localization methods (i.e., WLS method) and
the solid lines represent the ECDF of SI-based localization
methods. Blue triangles, orange squares, green circles, vio-
let diamonds and yellow asterisks denote the performance
associated with DL-TDOA, UL-TDOA, MRTT, AOD, and
fusion of DL-TDOA and AOD measurements, respectively.
In addition, in Tab. V performance results for different values
of the generative model parameters are presented for various
settings. The convergence of the EM algorithm used to fit the
generative models is also presented in Tab. VI.

A. Performance Results: Single-Value Estimates of Distance
and Angle

Tab. IV reports the root-mean-square error (RMSE), median
value, standard deviation, and 90-th percentile of the absolute
error between the estimated and true value for the distances

13Additional information such as NLOS detection can be employed to
further improve the accuracy of SVE-based localization. Here, we aim
to compare the performance of SVE-based and SI-based approaches for
localization in 5G and beyond networks under the same setting, in conformity
with 3GPP reports, and with the same prior information.

14Accuracy of single-value estimation is reported to quantify the quality
of the measurements used by both localization approaches and highlight
the difference in terms of wireless propagation conditions between the two
scenarios considered.

Fig. 5. ECDF for the horizontal localization error: UMi scenario and Type I
simulation setting.

Fig. 6. ECDF for the horizontal localization error: UMi scenario and Type II
simulation setting.

obtained from TOA measurements and angles obtained from
AOD measurements. Distance estimate (DE) accuracy for both
downlink and uplink is presented for all combinations of sce-
narios and simulation settings, while AOD estimate accuracy
is reported for IOO Type III. It can be observed that DEs are
significantly more accurate for IOO scenario compared to UMi
scenario. For downlink DEs in IOO Type I settings, RMSE
and median are approximately 20 m and 3 m lower compared
to downlink DE in UMi Type I settings, respectively. This can
be attributed to the fact that UMi scenario is a harsher wireless
propagation environment with higher delay spread and higher
probability of NLOS. It can also be noticed that uplink DE
accuracy is slightly worse compared to downlink DE. This
can be attributed to the lower transmission power of the SRS
compared to the PRS. Focusing on AOD estimation, it can
be noticed that despite the finite number of steering vectors
employed to transmit the PRS, median and 90-th percentile
are below 8◦.
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Fig. 7. ECDF for the horizontal localization error: IOO scenario and Type I
simulation setting.

Fig. 8. ECDF for the horizontal localization error: IOO scenario and Type II
simulation setting.

B. Performance Results: UMi Scenario

Fig. 5 shows the ECDF of the horizontal localization error
for the UMi scenario and Type I simulation setting. It can be
observed that the SI-based approach provides significant per-
formance improvements across all the percentiles compared to
the SVE-based approach, for all 5G measurements considered.
At the 80-th and 90-th percentiles, the localization accuracy
improves from 4 to 8 meters compared to SVE. This can be
attributed to the fact that the UMi scenario represents a harsh
wireless propagation environment with a high probability of
NLOS condition. In this regard, the SI-based approach via
its statistical characterization is more robust compared to
SVE-based approach and provides better localization accuracy.
It can also be noticed that, SI-based localization exhibits the
same performance for both DL-TDOA and UL-TDOA mea-
surements despite the fact that SRS exhibits less transmitted
power.

Fig. 9. ECDF for the horizontal localization error: IOO scenario and Type III
simulation setting.

Fig. 10. ECDF for the horizontal localization error: IOO scenario
and Type III simulation setting. with data fusion of DL-TDOA and AOD
measurements.

Fig. 6 shows the ECDF of the horizontal localization
error for the UMi scenario and Type II simulation setting.
The performance gain offered by the SI-based approach is
confirmed, and even more relevant with this simulation setting.
At the 90-th percentile, the SI-based approach improves the
localization accuracy up to approximately 10 m for MRTT
measurements compared to SVE-based. Similar gains can also
be observed for DL-TDOA and UL-TDOA measurements.
SI-based approach is able to fully exploit the increased RS
bandwidth and provides higher localization accuracy compared
to the SVE-based approach.

C. Performance Results: IOO Scenario

Fig. 7 shows the ECDF of the horizontal localization error
for the IOO scenario and Type I simulation setting. It can be
noticed that both SVE- and SI-based approaches provide satis-
factory localization accuracy for this combination of scenario
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TABLE V
90-TH PERCENTILE FOR THE HORIZONTAL LOCALIZATION ERROR FOR DIFFERENT NUMBERS OF MIXTURE IN THE GM MODEL

and simulation setting. The SI-based approach provides an
improvement of approximately 0.5 m in terms of localization
accuracy when MRTT measurements are employed. This can
be attributed to the fact that in the IOO scenario, contrary to the
UMi scenario, almost all the links experience LOS conditions
and provide reliable measurements.

Fig. 8 shows the ECDF of the horizontal localization error
for the IOO scenario and Type II simulation setting. Contrary
to the Type I simulation setting, the SI-based approach out-
performs the SVE-based approach. In particular, the greatest
performance gain provided by SI-based approach compared
to SVE-approach is experienced for MRTT measurements
where SI-based localization provides approximately 0.7 m of
horizontal accuracy at the 90-th percentile. On the other hand,
for DL-TDOA and UL-TDOA measurement performance
improvement is approximately 0.5 m. As already pointed out
for the simulation results in UMi scenario and Type II sim-
ulation setting, SI-based approach takes full advantage of the
increased RSs bandwidth.

Fig. 9 shows the ECDF of the horizontal localization
error for the IOO scenario and Type III simulation setting.
It can be observed that SI-based approach outperforms the
SVE-based approach regardless of the measurement employed
and it obtains sub-meter horizontal localization accuracy even
at the 90-th percentile. In particular, the SI-based approach
employing DL-TDOA and UL-TDOA provides approximately
0.9 m of horizontal localization accuracy 90-th percentile. For
MRTT measurements, SI-based localization achieves 0.2 m
horizontal accuracy at the 90-th percentile. It can also be
noted that for AOD measurements SI-based approach provides
approximately 1.5 m and 3 m of improvements at the 80-th and
90-th percentiles, respectively.

Fig. 10 shows the ECDF of the horizontal localization error
for IOO scenario and Type III simulation setting. In this

case, fusion of DL-TDOA and AOD measurements via both
SVE- and SI-based approaches are considered. It can be
observed that fusion of heterogeneous measurements via the
SI framework provides greater performance improvements
compared to the fusion based on SVEs. In particular, fusion
of DL-TDOA and AOD measurements based on SI provides
a performance improvement of over 4 m compared to the
fusion via the SVE-based approach and an additional 0.2 m
compared to the localization accuracy provided by SI exploit-
ing DL-TDOA. It can also be noted that fusion via the
SVE-based approach provides performance comparable to the
ones obtained via SI based only on AOD measurements.

D. Performance Results: Generative Model Parameters
Tab. V shows the 90-th percentile for the horizontal local-

ization error for different numbers of mixtures in the GM
models and a varying number of training points for fitting
the models. It can be observed that increasing NG provides
limited performance gains in terms of localization accuracy,
especially for the IOO scenario. It can also be observed that
localization based on MRTT measurements in the UMi sce-
nario benefits the most from an increased number of Gaussian
mixtures. In particular, increasing the number of mixtures
in the GM model from 3 to 6 provides a performance gain
of approximately 0.3 m for Type II simulation settings. This
can be attributed to the fact that UMi scenario exhibits more
complex propagation conditions which are better modeled by
a higher number of Gaussian mixtures.

Tab. VI shows the average and standard deviation of
the number of iterations required by the EM algorithm to
reach convergence, assuming the parameters used to obtain
the performance plots, i.e., NG = 3, Nt = 25000, and
ϵth = 10−9. The values are obtained by considering the
number of iterations over the 10 different training phases
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TABLE VI
AVERAGE AND STANDARD DEVIATION OF THE NUMBER OF ITERATIONS

REQUIRED BY EM ALGORITHM TO REACH CONVERGENCE

performed during the 10-fold cross-validation procedure. It can
be observed that the EM algorithm is efficient and consistent
in reaching convergence regardless of the measurements and
scenarios considered. It can also be noted that angle-based
measurements require the lowest average number of iterations
for reaching convergence compared to time measurements.

VI. CONCLUSION

This paper developed SI-based localization methods that
can operate with the standardized 5G architecture and extract
the SI from time/angle-based measurements. The perfor-
mance gain of SI-based localization methods compared to
existing SVE-based methods has been quantified in differ-
ent 3GPP scenarios and network settings at both sub-6 GHz
and millimiter Waves. Results show that SI-based localiza-
tion methods significantly outperform existing SVE-based
localization methods when using time-based measurements,
angle-based measurements, or fusion of the two types of
measurements. The improved localization accuracy provided
by the SI-based approach can support verticals and UCs for
5G and beyond networks. The SI-based approach represents an
attractive solution for upcoming 3GPP standardization of 5G
and beyond localization based on machine learning. The ability
of SI-based localization to embrace any type of measurements
makes it a candidate for providing accurate location awareness
in next generation networks.
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